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Abstract

Neural networks hold great potential to act as approximate models of nonlinear
dynamical systems, with the resulting neural approximations enabling verification
and control of such systems. However, in safety-critical contexts, the use of neural
approximations requires formal bounds on their closeness to the underlying system.
To address this fundamental challenge, we propose a novel, adaptive, and paral-
lelizable verification method based on certified first-order models. Our approach
provides formal error bounds on the neural approximations of dynamical systems,
allowing them to be safely employed as surrogates by interpreting the error bound
as bounded disturbances acting on the approximated dynamics. We demonstrate the
effectiveness and scalability of our method on a range of established benchmarks
from the literature, showing that it outperforms the state-of-the-art. Furthermore,
we highlight the flexibility of our framework by applying it to two novel scenar-
ios not previously explored in this context: neural network compression and an
autoencoder-based deep learning architecture for learning Koopman operators, both
yielding compelling results.

1 Introduction

Nonlinear dynamical models are ubiquitous across science and engineering and play a central role
in describing and designing complex cyber-physical systems [Alur, 2015]. However, to verify and
control such systems, it is often necessary to construct an abstraction: an approximation that locally
simplifies the model or relaxes its nonlinearities [Derler et al., 2012, Khalil, 2002, Sastry, 1999].
In general, an abstraction translates the concrete model—the system under study—into a simpler
abstract model that is more amenable to analysis [Baier and Katoen, 2008, Clarke et al., 2018]. A
common method for synthesizing abstractions is known as hybridization and involves partitioning
the state space into regions, each representing a state in a finite-state machine [Althoff et al., 2008,
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Asarin et al., 2007, Bak et al., 2016, Dang et al., 2010, Frehse, 2005, García Soto and Prabhakar,
2020, Henzinger and Wong-Toi, 1995, Li et al., 2020, Majumdar and Zamani, 2012, Prabhakar et al.,
2015, Roohi et al., 2016]. Neural networks with ReLU activations have emerged as a particularly
effective approach to hybridization, as each network configuration implicitly induces a partition of
the input domain into convex polytopes [Abate et al., 2022, Goujon et al., 2024, Villani and Schoots,
2023]. This enables simultaneous learning of both the partitioning and the simplified dynamics.

For neural abstractions to be practically useful, properties inferred from the abstraction—such as
those related to reachability or safety—must reliably transfer to the original system. Simulation-based
techniques fall short, as they are non-exhaustive and may miss unsafe behaviour. Formal verification
provides a sound alternative by exhaustively analyzing all possible inputs and outputs. Prior work
has used SMT solvers for this task [Fränzle et al., 2007, Abate et al., 2022, Solanki et al., 2025], but
their computational cost severely limits the scale and expressivity of verifiable networks.

To overcome these limitations, we introduce a scalable framework for verification of neural abstrac-
tions that avoids reliance on expensive SMT solvers. Our method constructs certified first-order
local approximations of the nonlinear system to tightly bound its behaviour. We then use neural
network verification tools to certify that the network’s output remains sufficiently close to the local
approximation. By combining this with a parallelizable input-partitioning strategy, we achieve sub-
stantial improvements in verification speeds and can handle neural networks of larger sizes compared
to state-of-the-art methods. Finally, to demonstrate the usefulness of our framework, we extend
neural abstractions beyond their native developments, demonstrating their effective application to
neural network compression (Section 4.2) and to learning Koopman operators [Brunton et al., 2016,
2022] (Section 4.3). Koopman operator theory, in particular, is an intriguing extension, as it is a
mathematical framework in which nonlinear dynamical systems are represented as linear operators
acting on a higher-dimensional function space.

Our contributions are summarised as follows:

1. We introduce a novel parallelizable method that enables adaptive verification of neural
abstractions with nonuniform accuracy across the input domain.

2. We eliminate the reliance on SMT solvers capable of handling nonlinear real arithmetic,
thereby removing the primary computational bottleneck in prior approaches.

3. We demonstrate that our approach outperforms existing methods on a variety of benchmarks
and highlight the fundamental limitations inherent in the verification of neural abstractions.

4. We demonstrate the effectiveness of our approach across a range of applications, including
neural network compression and the discovery of Koopman operators.

We begin in Section 2 by formally introducing neural abstractions, followed by presenting our
approach to certification in Section 3. The diverse applications we discuss show that our approach is
applicable to a broad range of tasks in the emerging field of Science for AI, and we argue it can be
considered a positive contribution to understanding neural network representations [Heil et al., 2025],
with no significant negative societal impact.

2 Neural approximations of nonlinear dynamics

We begin by introducing the system dynamics, for which we will synthesise neural network abstrac-
tions over a bounded domain. Let X ⊂ Rn denote the bounded input domain of interest, and suppose
f : X → Rm is a continuous (nonlinear) function describing the system’s dynamics. We focus on
two classes of systems:

• Continuous-time nonlinear systems, described by differential equations of the form
dx
dt = f(x), x ∈ X ;

• Discrete-time nonlinear systems, described by difference equations of the form xk+1 =
f(xk), xk ∈ X .

Given a dynamical system as described above, a neural abstraction is an ϵ-close approximation of
the dynamical system, as formally defined in Definition 1 below, which is a generalization of the
definition of neural abstractions introduced in Abate et al. [2022] for continuous-time dynamical
systems.
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Definition 1 (Neural Abstraction). Consider a dynamical system described by function f : Rn → Rm

and let X ⊂ Rn be a region of interest. A feed-forward neural network N : Rn → Rm defines a
neural abstraction, also called a neural approximation, of f with error bound ϵ > 0 over X , if it
holds that ∀x ∈ X : ∥f(x)−N(x)∥ ≤ ϵ where ∥ · ∥ is the L∞-norm2.

According to Definition 1, a neural abstraction of a dynamical system describes a dynamical system
with a bounded additive disturbance d, such that any trajectory (solution to the differential equation)
of the original dynamical system f is also a trajectory of the perturbed system. Specifically, in the
case where f describes a continuous-time system, we have the following equation for the perturbed
system:

dx

dt
= N(x) + d, ∥d∥ ≤ ϵ, x ∈ X , (1)

where ϵ represents the maximal deviation between the neural network approximation N(x) and the
original function f(x). In the discrete-time case, where f defines an update rule xk+1 = f(xk), any
trajectory (solution to the difference equation) of the original system f is also a trajectory of the
following discrete-time system:

xk+1 = N(xk) + d, ∥d∥ ≤ ϵ, x ∈ X . (2)

As the disturbance d is bounded by ϵ, the original system response, defined by f , is always contained
within that of the abstraction, defined by N with disturbance d. Thus, the abstraction is sound, which
enables formal guarantees to transfer from the abstraction to the concrete model.

2.1 Training

To obtain a neural network approximation of a dynamical system, we train a neural network N
to minimize both the mean and maximum approximation error over a batch of sampled inputs
{x1, . . . , xM}. To this end, we assume for the remainder of the paper that the function f has bounded
output and define the following loss function:

L =
1

M

M∑
l=1

∥f(xl)−N(xl)∥2 + λmax max
l∈{1,...,M}

∥f(xl)−N(xl)∥∞, (3)

where the parameter λmax = 0.001 balances the trade-off between minimizing the average error and
controlling the worst-case error across the sampled domain. We focus on training neural abstractions
with ReLU activation functions, although our approach is compatible with more general activation
functions, as permitted by the underlying solver (neural network verification tool). For our approach
to be sound while also scalable, we utilise a complete solver, specifically Marabou 2.0 [Wu et al.,
2024]. Further details regarding the network architecture, training procedure, and hyperparameters
are provided in Section 4. Once a neural network N has been trained, the central challenge lies in
certifying the accuracy, i.e., formally establishing the relation ∥f(x)−N(x)∥ ≤ ϵ between the neural
network abstraction and the concrete model. In what follows, we present our primary contribution, a
scalable verification approach for this problem based on an adaptive refinement of first-order models.
In Section 4, we empirically show how this framework substantially outperforms the state-of-the-art.

3 Certification of ϵ-closeness

We now introduce our verification approach that leverages local first-order models of f(x), thereby
enabling the application of modern techniques for neural network verification. To perform the
verification, we will seek to prove that no counterexample against ϵ-closeness exists. Thus we seek
an assignment of the negation of our desired specification, i.e.,

∃x : x ∈ X ∧ ∥f(x)−N(x)∥ > ϵ︸ ︷︷ ︸
ϕ

. (4)

If we find an assignment for x such that the formula ϕ is satisfiable, then we can establish that N
is not a valid neural abstraction for a given accuracy ϵ. As the search for satisfying assignments is

2For the remainder of the paper, unless otherwise specified, all norms are L∞.
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exhaustive, failure to find an assignment constitutes a proof that no such assignment exists, and thus
N is a valid neural abstraction for a given accuracy ϵ. In Section 3.1, we will describe the first-order
models and how they can be used in the context of verification, followed by certificate refinement in
Section 3.2 to combat conservatism introduced by the first-order models.
Remark. The selection of ϵ can be performed empirically, based on the maximum error observed
during training, or predefined according to strict application requirements. Notably, our proposed
approach allows for an efficient search for the optimal ϵ within a given computational budget.

3.1 First-order models

Given that the function f may include nonlinear terms, finding a satisfying assignment of ϕ in
(4) typically requires reasoning over quantifier-free nonlinear real arithmetic formulae. This is
computationally challenging and does not scale efficiently with problem complexity or the number
of optimization variables. To address this, we introduce an over- and under-approximation of the
dynamics of f using local first-order Taylor expansions of the vector field f . The choice of first-order
models is a balance in the trade-off between expressivity, since we are verifying input-output relations,
and maintaining linearity to enable formal verification. In this context, we will adaptively partition
the domain of interest X into hyperrectangles, which are represented as weighted L∞-balls.
Definition 2. Given a hyperrectangle with radius δ ∈ Rn

≥0 and center c ∈ Rn, the weighted L∞-ball
around c, denoted by Hδ(c), is defined as

Hδ(c) = {x ∈ Rn : |x− c| ≤ δ},

where | · | is the element-wise absolute value and ≤ is interpreted element-wise. Similarly, we
can define the hyperrectangle by its lower and upper corners, Hmin = c − δ and Hmax = c + δ,
respectively, as Hδ(c) = {x ∈ Rn : Hmin ≤ x ≤ Hmax}.

The choice of partitioning will be discussed in more detail in the following section. For now, let us
introduce the local first-order Taylor expansion, including an error bound.
Proposition 1 (Certified first-order Taylor Expansion). Let f : Rn → Rm be a continuously
differentiable function, and let Hδ(c) be a hyperrectangle centered at c ∈ Rn with radius δ. Then,
there exists a hyperrectangle R ⊆ Rm such that for all x ∈ Hδ(c), the following relation holds:

f(x) ∈ (f(c) +∇f(c)(x− c))⊕R,

where ⊕ denotes the Minkowski sum.

Computing R can be done efficiently when f is twice continuously differentiable using the Lagrange
error bound (see Appendix C.1 for details). The proof follows directly from Taylor’s theorem for
multivariate functions, along with the Lagrange error bound for higher-order terms [Joldes, 2011]. For
the remainder of the paper, we use the indices i ∈ {1, . . . , n} when referring to the input dimensions
of the function or the neural network, and j ∈ {1, . . . ,m} when referring to the output dimensions.
The first-order Taylor expansion in Proposition 1 provides the following sufficient condition for a
valid neural abstraction.
Theorem 1. Let f : Rn → Rm, N : Rn → Rm, and let Hδ(c) ⊂ Rn be a hyperrectangle centered
at c with radius δ. Let f(c) + ∇f(c)(x − c) ⊕ R be a certified Taylor expansion for f in Hδ(c).
If for each output dimension j ∈ {1, . . . ,m}, there does not exist a state x such that either of the
following inequalities is satisfied:

x ∈ Hδ(c) ∧ fj(c) +∇fj(c) · (x− c) +Rmax
j −Nj(x) ≥ ϵ, (5a)

x ∈ Hδ(c) ∧Nj(x)− fj(c)−∇fj(c) · (x− c)−Rmin
j ≥ ϵ, (5b)

then N is an ϵ-accurate neural abstraction of f over Hδ(c), i.e., ∥f(x)−N(x)∥ ≤ ϵ,∀x ∈ Hδ(c).

The proof of Theorem 1 is provided in Appendix B. Both f and ∇f are evaluated at the center
point, c, of the hyperrectangle Hδ(c), ensuring that all terms highlighted in orange in Equations (5a)
and (5b) remain fixed for a given hyperrectangle. In contrast, only the terms in blue vary with
the specific choice of x ∈ Hδ(c). As a result, the expression fj(c) +∇fj(c)(x − c) +Rmax/min

j

becomes linear. This allows Theorem 1 to be applied as a relaxation of the nonlinear predicate ϕ
from Equation (4), thereby enabling formal verification to proceed without relying on SMT solvers
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Figure 1: Graphical representation of the neural abstraction verification procedure with certificate
refinement.

capable of reasoning over nonlinear real arithmetic. Specifically, we employ Marabou 2.0 [Wu et al.,
2024], which implements an extension of the Simplex algorithm that was originally developed to
solve linear programs [Dantzig, 2002], to verify the satisfiability of Equations (5a) and (5b).

Since the domain X can be over-approximated by a finite union of hyperrectangles, i.e., X ⊆⋃I
ι=1 Hδι(c

ι), we can perform verification locally within each hyperrectangle Hδι(c
ι). By applying

a local first-order Taylor expansion within each region and bounding the remainder using Rmax

and Rmin, we obtain tighter bounds on the approximation error compared to approximating over
the full domain X . This localized approach effectively reduces the conservatism introduced by
the approximation, i.e., omitting higher-order derivative terms, while maintaining soundness of the
verification process.
Remark. We could allow the bound ϵ to vary over the domain X , selecting different values of ϵ for
each partition Hδι(c

ι). This would lead to a state-dependent disturbance in Equations (1) and (2).
Similarly, we could allow different ϵ for each output dimension, i.e., output-weighted ϵ-closeness.
However, for the sake of clarity and simplicity in the exposition, we omit this variation of ϵ.

3.2 Certificate refinement

In the previous section, we introduced first-order Taylor expansions to derive conservative over- and
under-approximations of the dynamics f . These approximations, captured in Equations (5a) and (5b),
consider the worst-case realizations of the error term r ∈ R. Consequently, when we compute the
bounds Rmax

j and Rmin
j , the counterexample x found may not always satisfy the formula ϕ from

Equation (4). This happens because the error bounds derived from the Taylor expansion may be
overly conservative. To address this issue, we propose a refinement strategy that partitions each
hyperrectangle locally, enabling tighter approximations of the dynamics and reducing conservatism.
The certification and partitioning strategy is illustrated in Figure 1. The decision to partition a
hyperrectangle into two separate hyperrectangles, referred to as a split, results from one of two
conditions:
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Figure 2: Partitioning of the domain to reduce conservatism. (Left) Linear terms do not require
partitioning, as they are captured accurately by the first-order model. (Right) In regions of high
nonlinearity (steeper dark function), finer rectangular partitioning reduces first-order approximation
error by adaptively refining the domain.

1. the Taylor remainder term is too conservative, i.e., Rmax
j −Rmin

j > ϵ,

2. a counterexample x does not satisfy ∥f(x)−N(x)∥ > ϵ.

In the first case, we split the hyperrectangle based purely on the conservatism of the Taylor approxi-
mation, which can be done without reasoning over the neural network, while in the second case, the
decision to split depends on the outcome of the network verification. If x satisfies ∥f(x)−N(x)∥ > ϵ,
no further splitting is necessary and x is returned as a proper counterexample.

When a hyperrectangle is split, it is necessary to determine along which axis the split should occur.
We choose this axis by identifying the input dimension that contributes most significantly to the
Taylor approximation error in the output. Specifically, for each input dimension i ∈ {1, . . . , n}, we
perturb the center point c of the hyperrectangle along that dimension. The perturbed point, denoted
c′, is defined such that c′l = cl for all l ̸= i, and c′i = ci + hi, where hi ∈ (0, δi) is a small, fixed
perturbation magnitude. For each such perturbation, we evaluate the absolute error between the
first-order Taylor model and the true dynamics f at c′. The input dimension associated with the
largest such error is then selected as the axis along which to split the hyperrectangle. For the selected
input dimension i, we split the original hyperrectangle Hδ(c) into two smaller hyperrectangles. These
are centered at c+ (δ − δ′) and c− (δ − δ′), respectively, where the new radius vector δ′ is defined
elementwise as:

δ′l =

{
δl if l ̸= i,
δl
2 if l = i.

This effectively halves the size of the hyperrectangle along the selected axis i, while keeping the
width in all other dimensions unchanged. Since each input dimension xi for i ∈ {1, . . . , n} can
influence each output dimension fj for j ∈ {1, . . . ,m} differently, we perform verification and
refinement separately for each output dimension.

The proposed partitioning strategy adapts the size of the hyperrectangles locally in accordance with
the nonlinearity of the function f(x). As illustrated in Figure 2, for the component f1, which is
linear, a single hyperrectangle suffices to certify the neural abstraction over the entire domain X . In
contrast, the second component, f2, contains highly nonlinear terms that necessitate finer partitioning
in regions where linear approximations are no longer sufficiently tight.

Since the verification of the abstraction can be performed locally over partitions Hδ(c), we exploit this
structure to parallelize the process across multiple processors, significantly improving performance.
To facilitate parallel execution, we employ a shared stack accessed by a pool of worker processes.
The domain X is initially partitioned into a set of hyperrectangles, which are pushed onto the stack.
Each process draws a hyperrectangle from the stack, performs the verification procedure described
earlier, and either certifies the region, marks it as uncertifiable if a counterexample is found, or splits
the region as previously discussed. In the case of a split, the resulting subregions are pushed onto the
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stack. The process then retrieves the next hyperrectangle and repeats the procedure, as summarized
in Figure 1.
Remark. The use of a stack (Last-In-First-Out) instead of a queue (First-In-First-Out) corresponds to
a depth-first rather than breadth-first exploration of the verification space, consistent with strategies
from branch-and-bound algorithms [Morrison et al., 2016]. A queue would be equally valid, though
it would require more memory. If early termination with counterexamples is desired rather than verifi-
cation until full coverage, e.g., in the context of Counter-Example Guided Inductive Synthesis [Abate
et al., 2018, 2022], a priority queue can be employed where the hyperrectangles would be weighted
by the error relative to their volume (Lebesgue measure).

4 Experimental Results

We empirically evaluate our approach on the benchmarks introduced in Abate et al. [2022] and
described in Table 1, and whose detailed dynamics can be found in Appendix A, as well as on
new benchmarks designed to demonstrate the extended capabilities of our method. In particular,
in what follows, we first present an empirical comparison with the method introduced in Abate
et al. [2022] and based on dReal [Gao et al., 2013], which currently represents the state-of-the-
art for neural abstractions; then, to highlight the generality and scalability of our approach, we
include two particularly challenging tasks: (i) a neural network compression benchmark, where a
network with 5 layers and 1024 neurons per layer is compressed to a network with 5 layers and 128
neurons per layer, achieving a 98.4% reduction in size; and (ii) a verification benchmark based on a
trajectory prediction network introduced in Dey and Davis [2023], Lusch et al. [2018], which learns
to approximate nonlinear system dynamics through Koopman operator theory. These two benchmarks
are discussed in Section 4.2 and 4.3, respectively. All experiments were executed on an Intel i7-
6700k CPU (8 cores) with 16GB memory. All experiments can be reproduced using the scripts
provided in the accompanying codebase available at https://anonymous.4open.science/r/
certified-neural-approximations-E679.

4.1 Comparison with dReal-based approaches

To benchmark our method against the state-of-the-art, we compare it with the approach of Abate et al.
[2022], which is based on dReal [Gao et al., 2013]; an SMT-solver over nonlinear real arithmetic3.
As evident from the results in Table 1, our method scales to larger models more effectively than
verification using dReal. This improved scalability arises as dReal is reasoning over nonlinear real
arithmetic, while our method avoids this by reasoning over local linear approximations. Our approach
successfully certifies all models with the 3x[64] architecture, while dReal exceeds the 1-hour timeout
on all large models, with the exception of the WaterTank and NonlinearOscillator. Our method
nevertheless achieves a noticeable speedup on all models (e.g. ≈150x faster for the WaterTank
experiment). For small networks and simple systems (WaterTank, NonLipschitzVectorField1, and
NonLipschitzVectorField2), our approach is slighty slower compared to the benchmark. This is due
to the overhead introduced by our use of the Marabou solver, which involves translating the neural
network into a linear program. It is important to emphasize that this overhead is not intrinsic to our
approach but rather a consequence of the current implementation and the solver choice.

4.2 Compression of learned dynamics

To demonstrate the capabilities of our approach beyond constructing abstractions of known analytical
dynamics, we apply the verification procedure to a neural network compression benchmark. The
motivation for this benchmark is that learning a large over-parameterized neural network from data is
common with state-of-the-art techniques, where the resulting neural network is typically very accurate
and implicitly regularized [Martin and Mahoney, 2021, Belkin et al., 2019, Jacot et al., 2018]. The
network is, however, computationally expensive, which is important in contexts such as embedded
systems, and less amenable to analysis, e.g., via the Piece-Wise Affine (PWA) representation induced
by the ReLU network structure. Neural network compression seeks to reduce the size of a model—
typically by pruning—while preserving its input-output behaviour [Luo et al., 2017, Memmel et al.,

3Note that our approach allows one to establish a certified subset of the domain, while the method in Abate
et al. [2022] provides only a single counterexample. Our approach can be further extended with a variable ϵ over
the domain of interest, allowing for a tighter certification in general.
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Table 1: Verification Results for Learning Dynamical Systems3

Our approach dReal
Model Network Certified (%) Time (s) Result Time (s)
WaterTank [12] 100.0 1.02 ✓ 0.017

3x[64] 100.0 3.08 ✓ 458.91

JetEngine [10, 16] 100.0 9.30 ✓ 27.18
3x[64] 100.0 47.01 Timeout (1h)

SteamGovernor [12] 100.0 12.59 ✓ 39.37
3x[64] 100.0 160.03 Timeout (1h)

Exponential 2x[14] 100.0 9.24 ✓ 9.99
3x[64] 100.0 13.97 Timeout (1h)

NonLipschitzVectorField1 [10] 100.0 2.65 ✓ 0.028
3x[64] 100.0 9.52 Timeout (1h)

NonLipschitzVectorField2 [12, 10] 100.0 7.75 ✓ 4.55
3x[64] 100.0 40.09 Timeout (1h)

VanDerPolOscillator 3x[64] 100.0 134.45 Timeout (1h)
Sine2D 3x[64] 100.0 193.04 Timeout (1h)
NonlinearOscillator 3x[64] 100.0 4.77 ✓ 234.52

2024]. However, the challenge in neural network compression is to guarantee that the compressed
neural network is ϵ-close to the original network.

For this compression benchmark, we first train a 5-layer ReLU network with 1024 neurons per
layer to learn the dynamics of the Lorenz attractor (described in Appendix A.10) from observed
trajectories. We then seek to reduce the model by independently training a smaller ReLU network,
consisting of 5 layers with 128 neurons per layer, to replicate the input-output behaviour of the
larger model—without access to its training trajectories or the underlying system dynamics. The
larger model comprises 4, 205, 571 parameters, while the compressed model contains only 66, 947,
corresponding to a 98.4% reduction in size. From the perspective of verification, the larger network
serves as the reference dynamics, while the smaller network acts as an abstraction of those learned
dynamics. This setup allows us to evaluate our method’s ability to handle large-scale networks and
non-analytical dynamics.

To fit within our verification framework, we construct certified first-order Taylor expansions of the
neural network dynamic model using CROWN [Zhang et al., 2022]. This is necessary since the
network is not twice continuously differentiable, which is required to calculate Lagrange error bounds.
CROWN computes (local) linear relaxations of a nonlinear function, particularly neural networks,
by recursively relaxing nonlinearities on the computation graph corresponding to the function (see
Appendix C.2 for details). The verification procedure was executed with ϵ = 0.6 and completed in
89 hours and 13 minutes. In total, 3, 504, 327 hyperrectangles were checked and certified or further
split according to the algorithm in Figure 1.

4.3 Verification of Koopman embeddings

We now shift to an operator-theoretic viewpoint of dynamical systems, wherein the evolution of a
system is described through the action of a (linear) operator on measurement functions. This frame-
work, known as Koopman theory, offers a powerful lens for analysing complex, nonlinear systems
[Brunton et al., 2022]. Notably, Koopman theory provides a route to uncovering intrinsic coordinate
systems in which the nonlinear dynamics manifest as linear. Originally introduced in Koopman
[1931], the Koopman operator represents a nonlinear dynamical system via an infinite-dimensional
linear operator acting on a Hilbert space of measurement functions. Despite the underlying system’s
nonlinearity, the Koopman operator is linear, and its spectral decomposition fully characterizes the
system’s behaviour [Brunton et al., 2016, 2022].
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In general, however, the Koopman operator is infinite-dimensional, making its exact computation
intractable. Thus, the aim is commonly to construct finite-dimensional approximations that capture
the dominant behaviour of the system. This entails identifying a low-dimensional invariant subspace
spanned by eigenfunctions of the Koopman operator, within which the dynamics evolve linearly.
Despite the promise of Koopman embeddings, obtaining tractable representations has remained a
central challenge in control theory. Utilizing neural networks to discover and represent Koopman
eigenfunctions has emerged as a promising approach in recent years [Lusch et al., 2018, Dey and
Davis, 2023]. While Koopman operators are commonly learned from data and a typical analysis
of learned Koopman embeddings would verify structural properties—such as the orthonormality of
eigenfunctions in Hamiltonian systems—such a treatment lies beyond the scope of this work. We
instead demonstrate that our approach to verification can be applied to neural architectures deployed
for learning Koopman embeddings, by verifying that the learned system evolution remains ϵ-close to
the true system dynamics.

K

x0

K

x0 x1 xH

E

D D D

Figure 3: The network architecture used
to learn a Koopman operator. The En-
coder (blue) lifts the input into a higher
dimensional space where linear multi-
plication with K (green) propagates the
system. To obtain trajectory points,
[x0, x1, . . . , x50], each propagated state
in the lifted space is decoded (orange).

We adopt a standard setup using the dlkoopman li-
brary [Dey and Davis, 2023]. The network architecture
comprises an autoencoder that learns the encoding and
decoding of states into a Koopman-invariant subspace,
along with a linear transformation within that subspace
(Figure 3). This network architecture can be interpreted
as a discrete-time neural abstraction that advances the
system ahead one-time step and outputs the state at time
step k + 1 (Equation (2)). The notable difference to the
discrete-time neural abstraction is that we consider the
output of the network to be a trajectory, i.e., a sequence of
H-subsequent states. Applications of such trajectory tasks
are commonly found throughout control theory, notably in
model predictive control [Rawlings et al., 2017].

We consider the Quadratic System provided in Appendix
A.11, a benchmark problem frequently studied in the liter-
ature [H. Tu et al., 2014, Brunton et al., 2016, Lusch et al.,
2018, Dey and Davis, 2023]. To improve reproducibility,
we leverage the dataset provided by Dey and Davis [2023] to learn the evolution of the system from
data. The final trained model takes an initial state x0 and produces the sequence [x0, x1, . . . , x50],
which represents the evolution of the dynamics. The network architecture is summarized in Figure 3.
Verification of the abstraction completed in 63.8min with 1955 counterexamples found and 97.20%
of the domain certified. An interesting observation is that, although the network achieved a low
prediction loss—specifically, a mean squared error of 0.002 on the validation set—our verification
framework was still able to identify counterexamples where the prediction error exceeds the specified
tolerance of ϵ = 0.1. At the same time, the method certifies that the network ϵ-accurately predicts the
system evolution over 97.20% of the input domain. Recall that in the presence of counterexamples,
previous verification methods fail to identify regions where the model remains ϵ-accurate. Meanwhile,
our approach offers valuable insight by localizing the regions in which the model can still be trusted,
even when global verification fails.

5 Limitations

The primary focus of our approach has been to scale the certification of neural abstractions to
accommodate larger, more expressive networks and to broaden their applicability. A key limitation
that remains, however, is the scalability with respect to the input domain. Our certificate refinement
strategy addresses this issue by verifying each output dimension independently, enabling local
refinement of inputs only when they significantly affect a given output in a highly nonlinear manner.
Nevertheless, for systems that are highly coupled and nonlinear, this approach can still lead to an
exponential increase in the number of hyperrectangles that must be verified as the input dimensionality
grows. This exponential blow-up—commonly referred to as the curse of dimensionality—is a
pervasive challenge in safety-critical control and formal verification. Mitigating this issue through
a judicious choice of coordinate representation that reduces coupling remains a focus for future
research.
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6 Conclusion

We presented a method for certifying neural abstractions of dynamical systems using local first-order
models. By leveraging Taylor expansions and local partitioning, we provide a way to efficiently
verify neural networks as abstractions of complex, nonlinear dynamical systems without relying on
expensive SMT solvers for nonlinear arithmetic. Our approach reduces conservatism by adaptively
refining the approximation based on the local nonlinearity of the system, leading to more accurate
and scalable verification. We demonstrated the effectiveness of our approach on several challenging
benchmarks, including network compression tasks and the verification of a trajectory prediction task
based on Koopman linearization.
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A Dynamical systems

A.1 Water Tank

A simple first-order nonlinear dynamical system modelling the water level in a tank with constant
inflow and outflow dependent on the water pressure (proportional to the square root of height).

ẋ = 1.5−
√
x

where x > 0 represents the water level. For certification, we use ϵ = 0.097 for the small network and
a tighter ϵ = 0.007 for the larger network. The input domain for certification is X = [0.1, 10.0].

A.2 Jet Engine

A two-dimensional nonlinear system with polynomial dynamics that models the behaviour of a
simplified jet engine:

ẋ = −y − 1.5x2 − 0.5x3 − 0.1

ẏ = 3x− y

For certification, we use ϵ = 0.039 for the small network and a tighter ϵ = 0.012 for the larger
network. The input domain for certification is X = [−1.0, 1.0]× [−1.0, 1.0].

A.3 Steam Governor

A mechanical governor used in steam engines, formulated as a three-dimensional nonlinear system
with trigonometric terms:

ẋ = y

ẏ = z2 sin(x) cos(x)− sin(x)− 3y

ż = −(cos(x)− 1)

For the implementation we use the trigonometric identity sin(x) cos(x) = 1
2 sin(2x) to rewrite ẏ as

1
2z

2 sin(2x)− sin(x)− 3y. For certification, we use ϵ = 0.105 for the small network and a tighter
ϵ = 0.06 for the larger network. The input domain for certification is X = [−1.0, 1.0]× [−1.0, 1.0]×
[−1.0, 1.0].

A.4 Exponential System

The exponential system features highly nonlinear dynamics with nested nonlinearities combining
trigonometric, exponential, and polynomial terms:

ẋ = − sin(ey
3+1)− y2

ẏ = −x

For certification, we use ϵ = 0.112 for the small network and a tighter ϵ = 0.04 for the larger network.
The input domain for certification is X = [−1.0, 1.0]× [−1.0, 1.0].

A.5 Non-Lipschitz Vector Field 1 (NL1)

A non-Lipschitz continuous vector field:

ẋ = y

ẏ =
√
x

where x ≥ 0. For certification, we use ϵ = 0.11 for the small network and a tighter ϵ = 0.03 for the
larger network. The input domain for certification is X = [0.0, 1.0]× [−1.0, 1.0].
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A.6 Non-Lipschitz Vector Field 2 (NL2)

A more challenging non-Lipschitz continuous vector field:

ẋ = x2 + y

ẏ = (x2)1/3 − x

For certification, we use ϵ = 0.081 for the small network and a tighter ϵ = 0.02 for the larger network.
The input domain for certification is X = [−1.0, 1.0]× [−1.0, 1.0].

A.7 Van der Pol Oscillator

The classical Van der Pol oscillator with nonlinear damping:

ẋ1 = x2

ẋ2 = µ(1− x2
1)x2 − x1

where µ > 0. For certification, we use ϵ = 0.25. The input domain for certification is X =
[−3.0, 3.0]× [−3.0, 3.0].

A.8 Sine 2D System

The Sine 2D system represents a two-dimensional nonlinear oscillator with sinusoidal coupling:

ẋ = sin(ωy · y)
ẏ = − sin(ωx · x)

with parameter values ωx = 1.0, ωy = 0.5. For certification, we use ϵ = 0.02. The input domain for
certification is X = [−π, π] × [−π, π]. We utilize a LeakyReLU activation function for networks
learning the Sine 2D System, both to improve learning accuracy and to demonstrate the applicability
of our approach beyond standard ReLU activation functions.

A.9 Nonlinear Oscillator

The nonlinear oscillator combines linear, cubic, and sinusoidal terms:

ẋ = −ax− bx3 + c sin(x)

with parameter values a = 1.0, b = 1/2, c = 0.3. For certification, we use ϵ = 0.165. The input
domain for certification is X = [−3.0, 3.0].

A.10 Lorenz Attractor

The three-dimensional Lorenz Attractor, famous for exhibiting chaotic behaviour:

ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz

with parameter values σ = 10, ρ = 28, and β = 8/3. The input domain for certification is
X = [−30.0, 30.0]× [−30.0, 30.0]× [0.0, 60.0]

A.11 Quadratic System Dynamics and Discrete-Time Solution Derivation

A simple system governed by the continuous time dynamics:

ẋ1 = µx1

ẋ2 = λ(x2 − x2
1)

where x1 and x2 are the state variables, and µ and λ are system parameters. The system includes
a linear term for x1 and a quadratic term involving x2

1 in the equation for x2. For training, the
initial conditions there chosen at random and the trajectory is computed over the time horizon [0, 1],
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with parameters µ = −0.05, λ = −1 and timestep of 0.02. The input domain for certification is
X = [−0.5, 0.5]× [−0.5, 0.5].

To generate trajectories of the system, we integrate the system numerically and sample the trajectory
evenly across the time horizon. For the purpose of verification, we derive the analytic expression of
the discrete-time system. The differential equation for x1(t) yields the solution

x1(t) = x1(0)e
µt

Solving the differential equation for x2(t) with 2µ ̸= λ yields

x2(t) =

(
x2(0) +

λx1(0)
2

2µ− λ

)
eλt − λx1(0)

2

2µ− λ
e2µt

For a discrete time step ∆t, we obtain the discrete-time system is:

xn+1
1 = xn

1 e
µ∆t

xn+1
2 =

(
xn
2 +

λ(xn
1 )

2

2µ− λ

)
eλ∆t − λ(xn

1 )
2

2µ− λ
e2µ∆t

where ∆ = 0.02 in the experiments.

B Proof of Theorem 1

Proof. We can express f(x) as:

f(x) = f(c) +∇f(c)(x− c) + r,

where r ∈ [Rmin,Rmax]. If no satisfying assignment exists for Equation (5a), it follows that:

fj(c) +∇fj(c)(x− c) +Rmax
j −Nj(x) < ϵ.

Since fj(c) +∇fj(c)(x− c) +Rmax
j provides an upper bound for fj(x), we have:

fj(x)−Nj(x) < ϵ.

Similarly, for the lower bound, Equation (5b):

Nj(x)− fj(x) < ϵ.

These bounds hold for all j ∈ {1, . . . ,m}. Therefore, when no satisfying assignment is found for all
j ∈ {1, . . . ,m}, it follows that:

∥f(x)−N(x)∥ ≤ ϵ, ∀x ∈ Hδ(c).

C Certified Taylor expansions

C.1 Using elementary functions

Suppose that f : Rn → Rm is composed of smooth elementary functions and is at least twice
continuously differentiable. We consider the first-order Taylor approximation of f around a point
x0 ∈ Rn:

f(x) ≈ f(x0) +∇f(x0)(x− x0),

and define the remainder R(x) ∈ Rm componentwise as:

Rj(x) = fj(x)−
[
fj(x0) +∇fj(x0)

⊤(x− x0)
]
.

This remainder captures the contribution of second and higher-order terms. By the Lagrange form of
the Taylor remainder, we have:

Rj(x) =
1

2
(x− x0)

⊤∇2fj(ξ)(x− x0),
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for some ξ on the line segment between x0 and x. To bound the magnitude of the remainder, we find
a constant Mj such that

∥∇2fj(x)∥2 ≤ Mj for all x ∈ Hδ(c),

where Hδ(c) is the compact, convex hyperrectangle containing x0 and x. Then,

|Rj(x)| ≤
1

2
Mj∥x− x0∥2.

We use precomputed second derivatives of standard elementary functions, e.g., for sin we obtain a
tight upper bound by considering the bound on | sin(x)| over a given interval [a, b]. We evaluate:

• The absolute values at the endpoints: | sin(a)| and | sin(b)|
• The values at critical points where the derivative cos(x) = 0, i.e., x = π

2 + kπ

We identify all such critical points within [a, b], evaluate | sin(x)| at each, and take the maximum of
these values and the endpoint values:

max
x∈[a,b]

| sin(x)| = max

| sin(a)|, | sin(b)|, max
x∈[a,b]
cos(x)=0

| sin(x)|


Since | sin(x)| = 1 at all such critical points, we simply check whether any x = π

2 + kπ lies in the
interval. If so, the maximum is 1. Otherwise, the bound is the maximum of the endpoints.

If the second derivative of a function is monotonic over the domain Hδ(c), we can obtain a tight
bound by evaluating at the endpoints:

• If ∇2fj is increasing on Hδ(c), then Mj = maxx∈Hδ(c) ∇2fj(x) = ∇2fj(xmax)

• If ∇2fj is decreasing on Hδ(c), then Mj = ∇2fj(xmin)

For composite functions f = h◦g, we compute second-derivative bounds using the chain and product
rules:

∇2fj(x) = Jg(x)
⊤∇2hj(g(x))Jg(x) +

∑
i

∂hj

∂zi
(g(x))∇2gi(x),

where Jg(x) is the Jacobian of g. Each term is bounded using known bounds on the elementary
derivatives of h and g, and the ranges of intermediate variables over Hδ(c).

C.2 Using CROWN

If the function f is not twice continuously differentiable, e.g. for a ReLU network, then the Lagrange
bound is not valid to compute the Taylor remainder. Instead, we employ CROWN [Zhang et al.,
2022], also known as Linear Bound Propagation, which was originally developed to verify neural
networks via linear relaxations of the network. CROWN comes in several flavours including forward-
mode (similar to the Taylor bound propagation above), backward-mode, forward-backward-mode
(relaxations via forward mode), CROWN-IBP (relaxations via Interval Bound Propagation), α-
CROWN (optimization of bounds), β-CROWN (neuron splitting branch-and-bound), and GCP-
CROWN (general cutting planes). We only employ backward mode, which is the original version. In
the remainder, when we refer to CROWN we mean backward-mode CROWN.
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The idea of CROWN is to operate on the computation graph and relax nonlinearities based on node
local input intervals, which can be computed using CROWN itself recursively. Figure 4 exemplifies
this process on a composition of polynomial functions, for ease of exposition. First, the nonlinear
term x3 is locally relaxed to upper and lower linear functions based on the input range. Then, starting
from the output with the linear functions Ay + b = Iy + 0 and Ay + b = Iy + 0, the bounding
functions are propagated backward through the computation graph to the input. If the computation
graph contains multiple nonlinearities, using the backward propagation from each nonlinearity to the
input, the input range to each node is calculated to locally relax it. We refer to [Xu et al., 2020] for
details on how to compute local relaxations based on input bounds and how to propagate through
linear and locally relaxed nonlinear operations.
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Answer: [Yes] In Section 5 we discuss the limitation or our approach in detail.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes] The proof of Theorem 1 is provided in the appendix while remaining
theoretical claims are discussed in detail in the main paper.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes] All the information needed to reproduce the main results is given in the
appendix. We have also provided the code and scripts to reproduce the experimental results.
In addition, to ease reproducibility of the verification results, we have made the ONNX files
of all trained models available.
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
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Answer: [Yes] All code as well as the ONNX models used for verification have been
made available. We have followed the Neurips submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy).

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes] In the appendix we have listed the dynamics and parameters of all dynamical
systems used in our benchmarks. We believe this reflects a level of detail that is necessary to
appreciate the results. Full details on all hyperparameters used for training and verification
are given in the code repository.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA] Care was taken to explain that our results are not of a statistical nature
as we utilise formal verification. As such error bars, confidence intervals, and statistical
significance tests were not used in our experiments.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes] We specify the memory, runtime and CPU cores utilised for the experiments.
We have ensured that all comparative benchmarks were run on similar hardware so as to
accurately reflect the effects of computer resources.
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19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes] We have reviewed the NeurIPS Code of Ethics, and have addressed the
Societal Impact of our work in the introduction, Section 1.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes] Our work is foundational research and not tied to particular applications. We
have nevertheless addressed potential societal impacts in the introduction, Section 1.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] We do not believe the data or models we have made available have a high
risk for misuse.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes] We are the authors of the code and assets used in this work, with the exception
of the benchmark dataset from Section 4.2, for which we have credited the original owners.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes] The code we have provided is well documented and we provide the scripts to
generate the ONNX models, for full reproducibility.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] The paper does not involve crowdsourcing nor research with human subjects.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] The paper does not involve crowdsourcing nor research with human subjects.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA] This research does not involve LLMs as any important, original, or non-
standard components.
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