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Abstract

One of the fundamental problems in spacecraft trajectory design is finding
the optimal transfer trajectory that minimizes the propellant consumption and
transfer time simultaneously. We formulate this as a multi-objective optimal
control (MOC) problem that involves optimizing over the initial or final state,
subject to state constraints. Drawing on recent developments in reachability
analysis subject to state constraints, we show that the proposed MOC problem
can be stated as an optimization problem subject to a constraint that involves
the sub-level set of the viscosity solution of a quasi-variational inequality. We
then generalize this approach to account for more general optimal control prob-
lems in Bolza form. We relate these problems to the Pareto front of the devel-
oped multi-objective programs. The proposed approach is demonstrated on two
low-thrust orbital transfer problems around a rotating asteroid.

Keywords: Optimal control; Reachability analysis; Multi-objective
optimization; Pareto optimality; Hamilton-Jacobi equations.

1. Introduction

Since the Galileo mission in 1991 we have seen a steady increase in pro-
posed missions to asteroids and comets, as they might hold the key to many
scientific questions including the origins of life on earth [3]. The Dawn mis-
sion to Vesta and Ceres proved the viability of low-thrust electric propulsion
for asteroid exploration [1, 32], and it is expected that many upcoming missions
will rely on similar low-thrust propulsion. While there has been a significant
study of interplanetary transfer trajectories using low-thrust propulsion, com-
paratively little research has been conducted on the trajectory design in the
vicinity of asteroids. We investigate a spacecraft trajectory design problem
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around an asteroid, where the objective is to use minimal amounts of propel-
lant to raise an orbit while keeping flight times as short as possible. This is a
multi-objective optimal control (MOC) problem, whereby one seeks to find the
optimal way a dynamical system can perform a certain task, while minimizing
or maximizing a set of, usually contradictory and incommensurable, objective
functions [30]. Conventional optimization techniques for spacecraft trajectory
design often fall into two categories, indirect methods, based on the calculus of
variations, and direct methods, whereby the optimal control problem is refor-
mulated as a nonlinear program. Direct approaches rely on parametrization and
while a candidate solution is found, there are no guarantees on the optimality of
the solution. Indirect methods, meanwhile rely on necessary analytic conditions
for optimality using Lagrange multipliers. Yet while optimality of the obtained
solutions may be guaranteed, indirect approaches, such as multiple shooting
methods, rely on a good initial approximation of the optimal trajectory [39, 41].
A third approach is dynamic programming, whereby the optimality conditions
are formulated in continuous time based on the Hamilton-Jacobi-Bellman (HJB)
equation [39], however, it is hampered by the so-called curse of dimensionality.
Despite this, unlike direct approaches, optimality is guaranteed, and unlike in-
direct approaches, the solution does not rely on an initial approximation of the
optimal trajectory. We expand on this third approach by taking advantage of
recent developments in reachability analysis.

Reachability analysis aims to find the set of points from which a target can
be reached within a given time, subject to constraints. It forms a fundamen-
tal part of the dynamics and control literature and has been used extensively
for controller synthesis of complex systems [4, 24, 29]. In recent years we have
seen considerable research being conducted into computing reachable sets us-
ing Hamilton-Jacobi (HJ) reachability analysis, whereby the reachable set is
derived from the viscosity solution of a HJB equation accounting also for the
presence of state constraints. Such a HJB framework is presented in [11, 25]
with more general value problems bypassing previous regularity issues presented
in [2]. In [17] an extension of the HJB framework to time-varying targets and
constraints is considered and in [15] the approach is extended to multi-objective
control problems. HJ reachability has also been successfully applied to various
aerospace applications including air traffic control [26], the climbing problem
of multi-stage launchers [8], payload optimization [9], as well as most recently
to the complete model of the ascent problem of multi-stage launchers [7]. One
of the advantages of using HJ reachability is that the optimal trajectory can
easily be constructed once the reachable set has been computed. This makes
HJ reachability attractive for problems that require computing trajectories for
various different initial states.

For the spacecraft trajectory design problem considered in this paper, there
are two possible formulations for minimizing the burnt propellant. The first
assumes that the initial mass is a free optimization variable. This approach
is common during mission design where the total required fuel budget is being
calculated. To this end, we formulate the spacecraft trajectory design problem as
a MOC problem and show that it can be equivalently stated as an optimization
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problem subject to a constraint that involves the sub-level set of a certain value
function. The latter is shown to be the unique continuous viscosity solution of a
quasi-variational inequality that involves a HJB equation. Such value functions
have been defined in [11, 25] to account for the presence of state constraints.
This formulation allows characterizing the Pareto front of the formulated MOC
problem and also facilitates its computation by means of available numerical
tools.

The second formulation of the spacecraft trajectory design problem assumes
a fixed initial mass and the objective is to maximize the remaining mass after
completing a given orbital maneuver. This approach is more common when the
maneuver needs to be added to a given mission and the available fuel is non-
negotiable. This formulation had been previously investigated by the authors in
[40]. To solve this second formulation of the spacecraft trajectory design prob-
lem, we draw on research from [15] and extend our formulation of the MOC
problem to introduce an auxiliary state, allowing us to account for arbitrary
problems in Bolza form, and, together with appropriate normalization and ap-
proximations allowing for a reduction of the state space, greatly improving on
the method presented in [40].

Thus our contributions can be summarized as

1. the formulation of an efficient constrained MOC problem for low-thrust
spacecraft trajectory design that optimizes only over the set of admissible
initial states and transition times,

2. the reduction of the state space through the use of appropriate approxi-
mations,

3. the expansion of the MOC problem to allow for a generalization of the pro-
posed methodology for arbitrary multi-objective problems in Bolza form.

This paper is organized into six sections. Section 2 contains details regard-
ing the derivations of the spacecraft dynamics as well as the definitions of the
constraints pertaining to its behavior. In Section 3 the optimal control problem
is formulated while Section 4 describes how the set of admissible initial states
is derived from the viscosity solution of a quasi-variational inequality. Section 5
is dedicated to the numerical computation and case study of an orbital transfer
around a rotating asteroid. Finally, Section 6 provides concluding remarks and
directions for future work.

2. Mathematical description and physical modeling

2.1. Spacecraft equations of motion

We begin by modeling the dynamics of the spacecraft. The spacecraft thrust
is defined in spherical coordinates as

u(t) := [α(t), δ(t),T(t)] ∈ U , (1)

where α(t) ∈ [−π, π] is the incidence angle, δ(t) ∈ [−π
2 ,

π
2 ] is the sideslip angle

and T(t) ∈ [0, Tmax] is the variable thrust, with Tmax denoting the maximal
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allowable thrust. The Cartesian transformation of the thrust vector is denoted
by ux(t), uy(t) and uz(t), respectively. The compact set U = [−π, π]×[−π

2 ,
π
2 ]×

[0, Tmax] is the set of possible control input values while u ∈ Uad denotes the
control policy and Uad denotes the set of admissible policies which is the set of
Lebesgue time measurable functions from [−∞, 0] to U . Note that time here is
considered to be non-positive to facilitate the reachability problem exposition
in Section 3. Boldface notation is used to denote time varying functions such as
trajectories and policies, while non-boldface notation is used to denote scalars
and vectors. The equations of motion of the spacecraft around a rotating body
can be expressed in 3-dimensional Euclidean space as a second-order ordinary
differential equation (see eg., [21])

2Ω(t)× dR(t)

dt
+Ω(t)× (Ω(t)×R(t)) +

dU(R(t))

dR

+
dΩ(t)

dt
×R(t)− u(t)

m(t)
= −d

2R(t)

dt2
, (2)

where R(t) is the radius vector from the asteroid’s center of mass to the particle,
the first and second time derivatives of R(t) are with respect to the body-fixed
coordinate system, U(R(t)) is the gravitational potential of the asteroid and Ω
is the rotational angular velocity vector of the asteroid relative to inertial space.

The term 2Ω(t)× dR(t)
dt

describes the Coriolis forces, Ω(t)× (Ω(t)×R(t)), the

centrifugal forces and dΩ(t)
dt

× R(t) the Euler forces. We consider an asteroid
rotating uniformly with constant magnitude ω around the z-axis. Therefore,
the Euler forces can be neglected and we can express the rotation vector as
Ω := ωez, where ez is the unit vector along the z-axis. Following [18], the radius
vector and its derivatives are given by

R(t) :=





x(t)
y(t)
z(t)



 ,
dR(t)

dt
=





vx(t)
vy(t)
vz(t)



 . (3)

The Coriolis and centrifugal forces (the first two terms in (2)) acting on the
spacecraft are thus

2Ω× dR(t)

dt
=





−2 vy(t)
2ωvx(t)

0



 , (4)

Ω× (Ω×R(t)) =





−ω2x(t)
−ω2y(t)

0



 . (5)

To model the current position, velocity, and available propellant, we define the
state vector

r :=
[

x, y, z, vx, vy, vz,∆m
]T ∈ R7, (6)

where ∆m ∈ R≥0 denotes the available propellant. The total spacecraft mass
can be expressed as m(t) = m0 +∆m(t), where m0 denotes the dry mass of the
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spacecraft. Following our derivations from (2), we can formulate the dynamics
of the spacecraft, ṙ = f(r, u), as

f(r, u) =























vx
vy
vz

Ux(x, y, z) + ω2x+ 2ωvy +
ux

m0+∆m

Uy(x, y, z) + ω2y − 2ωvx +
uy

m0+∆m

Uz(x, y, z) +
uz

m0+∆m

−
√
u2
x+u

2
y+u

2
z

vexhaust























, (7)

where vexhaust ∈ R≥0 is the exhaust velocity used to express the depletion of
mass as propellant is burned, Ux, Uy and Uz are the derivatives of the gravita-
tional potential in the direction of the unit vectors ex, ey and ez, respectively,
and where for brevity we neglect the time dependence by denoting r = r(t),
vx = vx(t), and similarly for the other states.

2.2. State constraints

Since the dynamics of the spacecraft were derived for orbits in the vicinity
of the asteroid, we need to enforce state constraints on x, y, z. We naturally also
need to ensure that we bound the amount of propellant available. Assuming
that the burnout mass of the spacecraft is the same as the dry mass, we set
mmin := 0 and mmax := mpropellant and impose mmin ≤ ∆m ≤ mmax.

Due to particles ejected from the asteroid, we do not want to fall below a
circular orbit with radius ρ :=

√

x2 + y2 + z2 of approximately ρmin = 1 km.
Furthermore, in order for the two-body problem under discussion to be valid
and the influence of other bodies in the solar system to be negligible, we need
to stay within the sphere of influence (SOI) of the asteroid. The SOI can be

approximated as in [37] by ρSOI ≈ a
(

M1

M2

)
2
5

, where a is the semi-major axis

of the asteroid’s orbit around the sun (1.5907 · 108 km), M1 is the Mass of
the asteroid (1.4091 · 1012 kg) and M2 is the mass of the sun (1.9890 · 1030
kg). Therefore, the sphere of influence of the asteroid is approximately ρmax =
ρSOI ≈ 8.74 km. The set of states that satisfy the aforementioned restrictions
is given by

K :=
{

r ∈ R7 : ρ ∈ [ρmin, ρmax],m ∈ [mmin,mmax]
}

.

The target orbit that we would like to transfer to is denoted by the closed target
set C ⊂ K.

The initial orbit that we start at is denoted by the closed initial set I ⊂ K.
Note that the initial and the target orbit restrict only the position and the
velocity, but allow the mass to take any admissible value within [mmin,mmax].

While Cartesian coordinates are useful for modeling the behavior of an object
around a rotating body, since we restrict all admissible states to lie within the
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set K, which constrains the radius ρ, it is more efficient to recast our problem
in spherical coordinates. To this end, define aρ, aθ, aψ as the transformations of

ax :=Ux(x, y, z) + ω2x+ 2ωvy,

ay :=Uy(x, y, z) + ω2y − 2ωvx,

az :=Uz(x, y, z).

The tangential velocity in the x-y plane, vt, and its perpendicular counterpart,
v⊥, can then be defined as follows:

[

vt
v⊥

]

=

[

ρθ̇ sinψ

ρψ̇

]

, (8)

[

at
a⊥

]

=

[

sinψ[aθρ+ θ̇vρ] + θ̇v⊥ cosψ

ρψ̇ + aψρ

]

. (9)

Then we can restate the system dynamics in spherical coordinates as

r =
[

ρ, θ, ψ, vρ, vt, v⊥,∆m
]T ∈ R7, (10)

f(r, u) =























vρ
vt

ρ sinψ
v⊥
ρ

aρ +
T

m0+∆m cosα

at +
T

m0+∆m sinα sin δ

a⊥ + T
m0+∆m sinα cos δ

− T
vexhaust























. (11)

With a slight abuse of notation, we also redefine I, C, and K in spherical coordi-
nates. Finally, we impose the following assumptions on the spacecraft dynamics.

Assumption 2.1. For every r ∈ K the set
{

f(r, u) : u ∈ U
}

is a compact

convex subset of R7.

Assumption 2.2. f : R7×U → R7 is bounded and there exists an Lf > 0 such
that for every u1, u2 ∈ U ,

||f(r1, u1)− f(r2, u2)||≤ Lf ||r1 − r2||.

Due to norm equivalence, the choice of norm is irrelevant and not further dis-
cussed. Using Assumptions 2.1 and 2.2, for any control policy u ∈ Uad, any
initial state r0 ∈ K and transfer time tf > 0, the system admits a unique,
absolutely continuous solution on [−tf , 0] (see [34]).
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3. Problem Statement

3.1. Multi-objective optimal control problem

Having defined the system dynamics, we are now in a position to discuss
how to find trajectories that start on an initial orbit, I, and take the spacecraft
to some final orbit, C. Additionally, the objective is to keep the flight time
and required propellant as small as possible. Thus, the multi-objective optimal
control problem can be formulated as a minimization problem whereby the first
goal is to minimize the required propellant, ∆m, and the second is to minimize
the required time for the orbit change, i.e., the transfer time, denoted by tf .
The trajectory, r, which is the solution of (11), belongs to the Sobolev space
W1,1(R7). The set of trajectory-control pairs on [−tf , 0] starting at r0 with
transfer time tf is denoted as:

Πr0,tf := {(r,u) : ṙ(t) = f(r(t),u(t)), ∀t ∈ [−tf , 0];
r(−tf ) = r0} ⊂ W1,1(R7)× Uad.

Note that as in [14] we adopt the convention that 0 denotes the terminal time
hence the transfer time tf denotes the time duration. Under Assumption 2.1
and by Filippov’s Theorem [23, pg.121], we can conclude, that Πr0,tf is compact.

Remark 3.1. For similar applications as the one discussed in this paper, where
Assumption 2.1 might not hold, we refer to [7] where convexification of the
dynamics is considered in order to ensure that the set of absolutely continuous
solutions of the problem is closed.

The set of admissible (in the sense of satisfying the state constraints) trajectory-
control pairs on [−tf , 0] starting at r0 with transfer time tf is denoted as:

ΠK,C
r0,tf

:= {(r,u) ∈ Πr0,tf : r(t) ∈ K, ∀t ∈ [−tf , 0];
r(0) ∈ C} ⊂ W1,1(R7)× Uad.

Finally, the set of admissible initial state and transfer time pairs is denoted as

Γ := {(r0, tf ) ∈ R7 × [0,+∞) such that ΠK,C
r0,tf

6= ∅}.

For a given initial state r0 ∈ R7 and transfer time tf ∈ [0,+∞), we can define
the cost functions as J1(r0, tf ) := ∆m and J2(r0, tf ) := tf , where ∆m is the
7-th element of the state vector r0. The 2-dimensional objective function J :
R7 × [0,+∞) → R2 can then be written as

J(r0, tf ) := [J1(r0, tf ), J2(r0, tf )]
T
. (12)

We are now in a position to formulate the multi-objective optimal control prob-
lem under study as

minimize
(r0,tf )∈I×[0,∞)

J(r0, tf )

subject to (r0, tf ) ∈ Γ
(13)
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3.2. Pareto optimality

The solution of (13) in general does not consist of a single isolated point,
but rather a set of optimal compromises between the objectives J1 and J2 [27].

Definition 3.2. A solution (r0, tf ) is considered Pareto optimal if ∄(r̂0, t̂f ) ∈ Γ
such that J(r̂0, t̂f ) < J(r0, tf ),

where a vector a is considered less than b (denoted a < b) if for every ele-
ment ai and bi the relation ai < bi holds. The relations ≤,≥, > are defined
in an analogous way. Following Definition 3.2, a solution (r0, tf ) is consid-
ered Pareto optimal if it is not possible to improve all its performance metrics
J1(r0, tf ), J2(r0, tf ) simultaneously. The set of Pareto optimal solutions is called
the Pareto set PS , while its image is the Pareto front PF . Therefore, the so-
lution of (13), i.e., the set of minimizing (r0, tf ) pairs, is the desired Pareto
set, while the cost function corresponding to the minimizing (r0, tf ) pairs is the
Pareto front.

To allow for mission designers to determine a compromise between mini-
mizing required propellant and transfer times, we wish to compute the Pareto
front. However, the unconventional constraint in (13) ensuring a solution (r0, tf )
is feasible, prevents us from solving (13) with standard MOC problem solvers.
Therefore, we will next discuss how we can recast the constraint (r0, tf ) ∈ Γ to
a standard nonlinear inequality constraint, which will allow us to compute the
Pareto front by means of conventional MOC problem solvers.

4. Solution to multi-objective optimal control problems

To find an equivalent formulation for the constraint (r0, tf ) ∈ Γ, let g(r) and
ν(r) be two Lipschitz functions (with Lipschitz constants Lg and Lν , respec-
tively) chosen such that

g(r) ≤0 ⇐⇒ r ∈ K,
ν(r) ≤0 ⇐⇒ r ∈ C.

This can be achieved by choosing g(r) and ν(r) as the signed distance to the
set K and C, respectively.

Next, we consider the value function ω:

ω(r0, tf ) := inf
(r,u)∈Πr0,tf

{

ν(r(0))
∨

max
τ∈[−tf ,0]

g(r(τ))
}

, (14)

where a
∨

b denotes max(a, b). We are now in a position to use the value function
to decide if, for a given initial state and transfer time, there exists a correspond-
ing admissible trajectory. Thus we can introduce an equivalent formulation of
(13).

Theorem 4.1. The constrained MOC problem, (13), is equivalent to
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minimize
(r0,tf )∈I×[0,∞)

J(r0, tf )

subject to ω(r0, tf ) ≤ 0.
(15)

Proof. We show that (r0, tf ) ∈ Γ ⇐⇒ ω(r0, tf ) ≤ 0.
Case A: Consider (r0, tf ) ∈ Γ. For the sake of contradiction assume that

ω(r0, tf ) > 0. This then implies that for all (r,u) ∈ ΠK,C
r0,tf

either ν(r(0)) >
0 ⇐⇒ r(0) /∈ C or there exists τ ∈ [−tf , 0] such that g(r(t)) > 0 ⇐⇒ r(t) /∈ K.
This contradicts the fact that (r0, tf ) ∈ Γ establishing that (r0, tf ) ∈ Γ implies
ω(r0, tf ) ≤ 0

Case B : Consider (r0, tf ) ∈ I × [0,∞), such that ω(r0, tf ) ≤ 0. Under
Assumption 2.1, applying Weierstrass’ Theorem on the existence of minima for
compact sets [2, 6], we can conclude that the infimum over Πr0,tf exists, and
thus, ω(r0, tf ) ≤ 0 implies the existence of a trajectory-control pair (r,u) ∈
Πr0,tf , such that for all t ∈ [−tf , 0], g(r(t)) ≤ 0 and ν(r(0)) ≤ 0. By definition
of the function g and ν, we thus have r(t) ∈ K for all t ∈ [−tf , 0] and r(0) ∈ C,
which in turns implies (r,u) ∈ ΠK,C

r0,tf
. Therefore,

ω(r0, tf ) ≤ 0 ⇒ (r0, tf ) ∈ Γ,

thus concluding the proof.

Theorem 4.1 implies that the Pareto front can be computed from the solution
of (15). To achieve this we discuss how to compute ω.

4.1. Value function computation

To begin to discuss how ω can be obtained, we introduce the Hamiltonian
H : R7 × R7 → R,

H(r, q) := −min
u∈U

(

qT f(r, u)
)

, (16)

where q ∈ R7 is the costate vector.

Theorem 4.2. The value function ω is the unique continuous viscosity solution
of the following quasi-variational inequality











0 = max {g(r)− ω(r, t), ∂tω +H(r,∇rω)}
for all t ∈ [0,∞), r ∈ R7,

ω(r, 0) =
(

ν(r)
∨

g(r)
)

for all r ∈ R7,

Since the Dynamic Programming Principle [6] holds for h ∈ [0, tf ], (r0, tf ) ∈
K × R with tf ≥ 0:

ω(r0, tf ) = inf
(r,u)∈Πr0,tf

{

ω(r(h− tf ), tf − h)
∨

max
s∈[−tf ,h−tf ]

g(r(s))
}

,

the proof of Theorem 4.2 follows standard arguments for viscosity solutions, as
shown in [2, 25]. Note that the infimum should be understood to be over the
restriction of Πr0,tf over [−tf , h− tf ].

9



In order to solve the quasi-variational inequality in Theorem 4.2, we employ
a finite differences scheme. As in [11, 25], a consequence following from Theorem
4.2 is the Lipschitz continuity of the value function.

Proposition 4.3. The value function ω is Lipschitz continuous.

The proof is similar to the more general proof of Proposition 4.9 that is intro-
duced in the sequel. Proposition 4.3 allows us to make statements about the
discrete-continuous error estimate, for which we refer to Theorem 5 in [11], as
well as the convergence of the value function, for which we refer to Proposition
6 in [16].

The Hamiltonian admits an explicit form. To this end, consider the term

C(r, q) := q1vρ + q2vt + q3v⊥ + q4aρ + q5at + q6a⊥.

Then we can write the Hamiltonian as

H(r, q) := −min
u∈U

( T

m0 +∆m
(q4 cosα

+ sinα (q5 sin δ + q6 cos δ) )− q7
T

vexhaust

)

− C(r, q). (17)

As T is always positive, the thrust angles can be optimized separately; see
Appendix for more details. To this end, the derivation of α∗ and δ∗ follows a
similar procedure as in [7] and is listed in the Appendix. After applying the
optimal thrust angles, the Hamiltonian becomes affine in T and we are able to
find the optimal thrust magnitude. In particular, H(r, q) becomes

H(r, q) = − min
T∈[0,Tmax]

(

− T

m0 +∆m

√

q24 + q25 + q26−q7
T

vexhaust

)

−C(r, q) (18)

⇒ T ∗ :=

{

Tmax if q7
vexhaust

+

√
q2
4
+q2

5
+q2

6

m0+∆m ≥ 0

0 otherwise
. (19)

Remark 4.4. The singular control case, q7
vexhaust

+

√
q2
4
+q2

5
+q2

6

m0+∆m = 0, is negli-
gible for the consideration of the optimal Hamiltonian. For the optimal con-
trol computation during the trajectory calculation, we have numerically in-
vestigated the occurrence of singular arcs and found no instances in which√
q2
4
+q2

5
+q2

6

m0+∆m = − q7
vexhaust

over an extended interval, thus we do not further con-
sider the singular control case.

Finally, applying T ∗ and rewriting the minimum as the maximum of the nega-
tion of the associated function, the Hamiltonian takes the following analytic
form

H(r, q) = −C(r, q) + max
(

q7
Tmax

vexhaust
+

Tmax

m0 +∆m

√

q24 + q25 + q26 , 0
)

.
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4.2. Extension to problems in Bolza form

We will now generalize our approach to problems where the objective func-
tions do not rely only on the initial state and are written in Bolza form. To
achieve this we need to introduce auxiliary states. As in [2, 15], we show how
problems in Bolza form are reformulated into Mayer form, and then show how
problems in Mayer form are solved in a similar fashion as in Section 3. Consider
the p-dimensional objective function defined as:

JBolza(r,u, tf ) := Jt(r(0)) +

∫ 0

−tf

Jr(r(s),u(s))ds, (20)

where Jt denotes the terminal cost and Jr denotes the running cost. We impose
the following assumptions, as in [15].

Assumption 4.5. Jt is locally Lipschitz continuous on R7 with Lipschitz con-
stant Lt(R) for every neighborhood R ⊂ R7.

Assumption 4.6. Jr is continuous on R7 × U . Moreover, Jr is locally Lips-
chitz continuous on the first variable with Lipschitz constant Lr(R) for every
neighborhood R ⊂ R7.

Remark 4.7. To ease notation, we omit the dependents on the neighborhood
for the Lipschitz constants and instead assume the existence of a global Lipschitz
constant Lt and Lr, respectively.

Next, we define an auxiliary state z ∈ Rp as:

{

ż(s) = −Jr(r(s),u(s)), ∀s ∈ [−tf , 0]
z(0) = z0,

(21)

where z0 becomes an optimization parameter and z ∈ W1,1(Rp). The auxiliary
state captures the cumulative running cost and thus is treated as an additional
state. In the same manner we previously ensured a trajectory, r, stayed within
the set K, we bound z and ensure that the integrated running cost, added with
the terminal cost, stays below some value z0. To capture all possible trajectories,
we introduce the set

Zr0,tf ,z0 := {(r,u, z) : (r,u) ∈ Πr0,tf ; ż(s) =

− Jr(r(s),u(s)), ∀s ∈ [−tf , 0]; z(0) = z0}, (22)

and make the following assumption.

Assumption 4.8. For every r ∈ R7,the set

{[

f(r, u)
−Jr(r, u)

]

: u ∈ U ,
}

is a compact convex subset of R7 × Rp.
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We now introduce the auxiliary value function ϑ:

ϑ(r0, tf , z0) := inf
(r,u,z)∈Zr0,tf ,z0

{

∨

i

[

J it (r(0))− zi(−tf )
]

∨

ν(r(0))
∨

max
s∈[−tf ,0]

g(r(s))
}

, (23)

where
∨

i x
i denotes the maximum element of the vector x. As with ω, the

term maxs∈[−tf ,0] g(r(s)) and ν(r(0)) ensures that any trajectory r remains in

K and terminates in C. The additional term J it (r(0)) − zi(−tf ) ensures that
the integrated running cost, Jr, combined with the terminal cost, Jt, never
grows larger than z0. Thus, in addition to ensuring that (r,u) are admissible
trajectory control pairs, the sub-zero level set of ϑ bounds the terminal and
integrated running cost. Therefore,

ϑ(r0, tf , z0) ≤ 0 ⇐⇒
[

∃(r,u) ∈ ΠK,C
r0,tf

, JBolza(r,u, tf ) ≤ z0

]

. (24)

We are now in a position to introduce the generalized multi-objective optimal
control problem for objective functions in Bolza form:

minimize
(r0,tf )∈I×[0,∞)

z0

subject to ϑ(r0, tf , z0) ≤ 0,
(25)

where z0 represents an upper bound for the term JBolza(r,u, tf ), without explicit
knowledge of r or u.

The generalized value function can again be obtained as the unique contin-
uous viscosity solution of a quasi-variational inequality



























max {g(r)−ϑ(r, t, z), ∂tϑ+H(r,∇rϑ,∇zϑ)} = 0

for all t ∈ [0,∞), r ∈ R7, z ∈ Rp,

ϑ(r, 0, z) =
∨

i

[

J it (r)− zi
]

∨

ν(r)
∨

g(r)

for all r ∈ R7,

(26)

where the Hamiltonian is defined as

H(r, qr, qz) := min
u∈U

(

qTr f(r, u)− qTz Jr(r, u)
)

.

Proposition 4.9. The value function ϑ is Lipschitz continuous.

The proof can be found in the Appendix. Proposition 4.9 can be used to show
that a numerical solution of (26) (in the viscosity sense) can always be deter-
mined.

Under Assumptions 2.2, 4.5, 4.6 and 4.8, by Filippov’s Theorem [23], the
problem (23) admits an optimal solution, which implies the existence of an
admissible r and z [15]. This yields the following relationship due to (21)

∨

i

[

J it(r(0))− zi(−tf )
]

=
∨

i

[

J it (r(0)) +

∫ 0

−tf

J ir(r(s),u(s))ds− zi0

]

. (27)
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5. Numerical Approximation and Results

We will now discuss how the value functions can be obtained numerically,
prior to discussing how the spacecraft trajectory design problem is solved. Fol-
lowing Proposition 4.3, a numerical solution to (26) can be found. To this end,
we employ the Level Set Methods toolbox of [28]. For the computation of ω, we
use a Lax-Friedrich Hamiltonian

H(r, p−, p+) = H(r,
p− + p+

2
)−

7
∑

k=1

αk
2
(p+ − p−), (28)

where p+ and p− are the right and left derivatives computed using an appro-
priate fifth-order weighted essentially non-oscillatory (WENO) scheme. The
Lax-Friedrich Hamiltonian consists of an analytic expression of the Hamilto-
nian (derived previously), as well as a dissipation term, which is scaled by the
dissipation coefficients αk. The dissipation coefficients αk needs to satisfy

αk ≥
∣

∣

∣

∣

∂H

∂qk

∣

∣

∣

∣

. (29)

Since we need αk to serve as an upper bound, we consider the control input
that maximizes the Hamiltonian:

∣

∣

∣

∣

∂H

∂qk

∣

∣

∣

∣

=
∣

∣

∣
− ∂C(r, q)

∂qk
+

∂

∂qk
max

(

q7
Tmax

vexhaust

+
Tmax

m0 +∆m

√

q24 + q25 + q26 , 0
)∣

∣

∣
(30)

αk =



























































|vρ| k = 1

| vt
ρ sinψ | k = 2

| v⊥
ρ
| k = 3

|aρ −max(0, Tmaxq3

(m0+∆m)
√
q2
3
+q2

4
+q2

5

)| k = 4

|at −max(0, Tmaxq4

(m0+∆m)
√
q2
3
+q2

4
+q2

5

)| k = 5

|a⊥ −max(0, Tmaxq5

(m0+∆m)
√
q2
3
+q2

4
+q2

5

)| k = 6

Tmax

vexhaust
k = 7,

(31)

For a further discussion of the Lax-Friedrich Hamiltonian and WENO scheme,
we refer to [31], while for a discussion of the convergence of ω and the derivation
of a necessary Courant-Friedrichs-Lewy condition, we refer to [11, 19, 28].

5.1. Implementation

To illustrate the theoretical results of the previous sections, we consider a
spacecraft on an initial near circular orbit around asteroid Castalia 4769. The
goal is to compute an efficient transfer trajectory that raises the spacecraft to

13



Table 1: Normalization
Scale Values

Distance Initial radius ρ0
Velocity 2 m/s
Time ρ0/v0
Mass 1 kg
Force Maximum thrust Tmax

a stable orbit at an altitude of 6117.5 m above the asteroid. For the derivation
of a stable orbit around Castalia 4769 we refer to [22] and references therein.
The gravity of Castalia 4769 was modeled by means of a spherical harmonic
expansion as discussed in [20, 35, 36]. Even though the proposed theoretical
framework allows us to tackle problems of any state dimension, the available
numerical tools and computational power limit us to only study the lower-
dimensional planar case of the application. We, therefore, omit the states ψ
and v⊥ to consider only

r =
[

ρ, θ, vρ, vt,∆m
]T ∈ R5. (32)

To avoid ill-conditioning when solving the HJB equation, the state vector
is normalized using the constants introduced in Table 1. This results in the
following dynamics:

f(r, u) =













vρ
vt
ρ

aρ +
cT

m0+∆m cosα

at +
cT

m0+∆m sinα

− cT
vexhaust













, (33)

where c = Tmaxρ0/(m0V
2
0 ) is a normalization constant. ρ0, m0, and v0 denote

the initial radius, mass, and velocity of the initial orbit, respectively. The opti-
mal control policy and trajectory (r,u) ∈ ΠK,C

r0,tf
can be constructed efficiently

using the numerical approximation of ω. For a given N ∈ N we consider the
time step h = 1

N
and a uniform grid of [−tf , 0] with spacing sk = k

N
. Let us

define the state {rk}Nk=0 and control {uk}N−1
k=0 for the numerical approximation

of the optimal trajectory and control policy. Setting r0 as the initial orbit, we
proceed by iteratively computing the control value

uk(rk) ∈ argmin
u∈U

ω(rk + hf(rk, u), sk)
∨

g(rk).

For a given ω(rk, sk), this is done by numerically taking the partial derivatives
along each grid direction to estimate the costate vector, q, and then determining
the optimal control values as the minimizer of the Hamiltonian, H. After uk
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Figure 1: Gravitational acceleration comparing Uρ and Uθ around Castalia 4769.

is determined we compute rk+1 using the Matlab ode113 function, a variable-
order Adams-Bashforth-Moulton method of order 1 to 13 [38], and increment
k. For the implementation, we discretized the interval [−tf , 0] using N = 4000
grid points.

As shown in Figure 1, when considering orbits further than 4 km away from
the surface of the asteroid, the variation of the gravitational acceleration along
θ becomes negligible. It is, therefore, possible to approximate the gravitational
terms in spherical coordinates as

Uρ(ρ, θ) ≈ Uρ(ρ)

Uθ(ρ, θ) ≈ 0.

Using this approximation makes aρ and at independent of θ. This allows us to
omit a grid dimension while numerically solving the quasi-variational inequality
in Theorem 4.2, greatly reducing the computational cost. Thus the final set of
states used for the computation of the value function is

r =
[

ρ, vρ, vt,∆m
]T ∈ R4. (34)

During the calculation of the optimal trajectory, θ can easily be reconstructed
by forward integrating the dynamics at each time step sk, i.e.,

θk+1 = θk +

∫ sk+1

sk

vkt
ρk
ds. (35)
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Table 2: Spatial grid configuration

ρ vρ vt ∆m
Points 50 40 40 32
Spacing 0.0045 0.0416 0.0088 0.0067
Minimum 0.8067 -0.2495 -1.4154 -0.0533
Maximum 1.0270 1.3722 -1.0704 0.1533

Figure 2: The evolution of the value function, ω, projected in the ρ-vt plane for vρ = 0 and
∆m = 100 g.

5.2. Simulation results

The spacecraft is modeled with 750 kg of dry mass, 600 mN of maximum
thrust, and an exhaust velocity of 40 km/s. Using an initial orbit with radius 5.1
km and tangential velocity of −2.4 m/s, we are able to compute the numerical
approximation of ω using the spatial grid described in Table 2 in combination
with a temporal grid using N = 1000 grid points. The propagation of the zero
level set over time is shown in Figure 2 and 3. Since the temporal grid for the
calculation of the value function is more coarse than that used for the trajectory
calculation, we need to interpolate the value function while computing the final
trajectory. The final computed trajectory, for an initial propellant mass of
24.89 g and transfer time 2757 s is shown in Figure 4. The asteroid rendering
for Figure 4 was computed as in [22].

The accuracy of the final orbit is within 41 meters of the target orbit. Calcu-
lating ω took 9 hours using a 3 GHz 8-Core Intel Core i7-9700 processor running
Matlab with an extension of the Level Set Methods toolbox [13]. The run time
and accuracy can be significantly improved upon when using optimized code
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Figure 3: The evolution of the zero level set of the value function, ω, projected in the ρ-vt
plane for vρ = 0 and ∆m = 100 g.

Table 3: Comparison of the accuracy, CPU time, and memory usage as the size of the grid
changes

Low Medium High
Grid Size [24 18 18 12] [32 24 24 16] [50 40 40 32]
CPU Time 20 min 44 min 9.28 hours
Memory to store ω 374 MB 1181 MB 10.25 GB
|ρfinal − ρtarget| 82.72 m 64.72 m 40.83 m
|vρ,final − vρ,target| 6.80e-5 m

s
4.26e-5 m

s
8.31e-7 m

s

|vt,final − vt,target| 2.40e-4 m
s

4.01e-4 m
s

2.41e-4 m
s

such as [10, 12]. To show how the accuracy of the solution, the memory us-
age as well as the CPU time varies with the grid size, we recompute the value
function and the trajectory with coarser spatial grids, as presented in Table
3. We use only single-precision arrays to store the value function, yet utilized
double-precision arrays for all numerical calculations on the value function. The
subscript final denotes the values of the final point of the computed trajectory,
i.e. r(0), while target refers to the target orbit used to define C and subsequently
initialize the computation of the value function. Once ω is computed, it is in-
corporated into (15), which is solved using Matlab’s paretosearch function.
Solving the MOC problem took 120 seconds and the resulting Pareto front is
shown in Figure 5.

A comparison of the thrust magnitude of the smoothed optimal control policy
is shown in Figure 6. As can be seen, the time-optimal solution uses near
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Figure 4: Initial orbit and transfer trajectory to a circular orbit ≈ 1 km further away from
the asteroid.

20 25 30 35 40 45 50 55
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2900

3000

3100
Pareto front

Figure 5: Pareto front of the objective functions J1 = ∆m in g and J2 = tf in seconds. The
trajectory in Figure 4 is derived using the point marked by the black diamond, while the
time-optimal solution used in Figure 6 uses the point denoted by the magenta pentagram.
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Figure 6: A comparison of the thrust magnitude of the smoothed optimal control policy of
the time-optimal solution and the trajectory presented in Figure 4.

Table 4: Spatial grid configuration for the Bolza problem

ρ vρ vt ∆m z
Points 32 24 24 32 32
Spacing 0.007 0.069 0.016 0.0067 0.0067
Minimum 0.805 -0.277 -1.446 -0.0533 -0.1533
Maximum 1.029 1.317 -1.068 0.1533 0.0533

continuous thrust to reach the target, at the cost of using a large amount of
fuel. The control policy of the trajectory presented in Figure 4 meanwhile, has
noticeable cruising phases where no fuel is consumed. As expected, the thrust
magnitude of both policies follows a bang-bang structure.

To illustrate the results of problems in Bolza form, we consider the case of
optimizing the remaining propellant in oppose to the initial propellant. There-
fore, let us fix the initial propellant to 100 g. We use a similar setup as in
5, with the addition of the auxiliary state, z, defined as a terminal cost. We
consider the uniform spaced grid over r and z, defined in Table 4. Storing the
value function using single precision requires 15.2 GB of memory. Since the
objective is to maximize the remaining propellant, the optimization problem
needs to minimize −∆m. Therefore, for a given final state rf ∈ R7 and trans-
fer time tf ∈ [0,+∞), we define the cost functions as J1(rf , tf ) := −∆m and
J2(rf , tf ) := tf , where ∆m denotes the 7-th element of the state vector rf (the
mass in our case). The 2-dimensional objective function J : R7× [0,+∞) → R2

can then be written as

J(rf , tf ) := [J1(rf , tf ), J2(rf , tf )]
T
. (36)
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Figure 7: Pareto front of the objective functions J1 = z in g and J2 = tf in seconds, for the
Bolza problem. The point used for trajectory calculations is marked by the black diamond.

Table 5: Comparison of the accuracy, cpu time, and memory usage for the second formulation
in Bolza form.

Bolza-formulation
Grid Size [32 24 24 32 32]
CPU Time 32 hours
Memory to store ω 15.2 GB
|ρfinal − ρtarget| 66.14 m
|vρ,final − vρ,target| 1.8e-6 m

s

|vt,final − vt,target| 0.0018 m
s

The resulting Pareto front is shown in Figure 7. Calculating the reachable set
took approximately 32 hours of CPU time. Using the reachable set, calculating
the Pareto front took approximately 258 seconds. As expected, the Pareto front
looks similar to that of Figure 5, yet not identical due to numerical inaccuracy
and change in the initial mass, resulting in modified dynamics.

Using an initial propellant mass of 100 g, z of −75 g, and transfer time of
2698 s, the transfer orbit is computed in the same way as before. As expected,
the transfer trajectory is similar to the trajectory shown in Figure 4, and the
accuracy of the transfer orbit is within 66 meters of the target orbit. For com-
parison to the first approach, the accuracy of the second approach is shown in
Table 5. From comparing the Pareto front, it can be seen that both methods
have a minimum transfer time of around 2500 seconds as well as a minimum
propellant requirement of just over 20 g.
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6. Conclusion

We have presented a novel method of using the value function of a quasi-
variational inequality to compute the decision space of multi-objective optimiza-
tion problems. The feasibility and effectiveness of the proposed approach was
demonstrated by applying it to the problem of low-thrust trajectory design.
The approach is applicable to arbitrary multi-objective optimization problems
where the control variable is required to lie within a reachable set.

Since the Hamiltonian becomes affine with respect to the thrust magnitude,
once the thrust angles have been fixed, future research aims to exploit this fact
by integrating classification based approaches [33]. Furthermore, utilizing ap-
proximations of the reachable set as in [5], as well as decomposing the reachable
sets as in [14], seems promising.
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[7] O. Bokanowski, E. Bourgeois, A. Désilles, and H. Zidani. Global opti-
mization approach for the ascent problem of multi-stage launchers. In
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Appendix A. Proposition Appendix A.1

Proposition Appendix A.1. Under Assumption 2.2, any two trajectories r

and r̂ reconstructed from f , with r(−tf ) = r0 and r̂(−tf ) = r̂0, respectively, are
such that ||r(τ)− r̂(τ)|| ≤ ||r0 − r̂0||e(tf+τ)Lf for all τ ∈ [−tf , 0].

Proof. Let r0, r̂0 ∈ R7 be two initial states, and tf ∈ [0,∞). For the same tf ,
we choose two trajectory control pairs (r,u) ∈ Πr0,tf and (r̂, û) ∈ Πr̂0,tf . Then
by Carathéodory’s existence of solutions [34], the following relation holds:

||r(−t)− r̂(−t)|| ≤ ||r0 − r̂0||+
∫ −t

−tf

||f(r(s),u(s))− f(r̂(s), û(s))||ds

≤ ||r0 − r̂0||+ Lf

∫ −t

−tf

||r(s)− r̂(s)||ds

≤ ||r0 − r̂0||e(tf−t)Lf ,

where the second inequality is due to Assumption 2.2, while the last inequality
is due to the Bellman-Gronwall Lemma [34].
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Appendix B. Proof of Proposition 4.9

Proof. Fix (r0, z0), (r̂0, ẑ0) ∈ R7 × Rp, tf ∈ [0,∞) and let ǫ > 0. We choose
(r̂, û, ẑ) ∈ Zr̂0,tf ,ẑ0, such that

ϑ(r̂0, tf , ẑ0) ≥
∨

i

[

J it (r̂(0))− ẑi(−tf )
]

∨

ν(r̂(0))
∨

max
s∈[−tf ,0]

g(r̂(s))− ǫ.

By definition of ϑ, for any (r,u) ∈ Πr0,t, this yields the following relation

ϑ(r0, tf , z0)−ϑ(r̂0, tf , ẑ0) ≤
∨

i

[

J it (r(0))− zi(−tf )
]

∨

ν(r(0))
∨

max
s∈[−tf ,0]

g(r(s))

−
∨

i

[

J it(r̂(0))− ẑi(−tf )
]

∨

ν(r̂(0))
∨

max
s∈[−tf ,0]

g(r̂(s)) + ǫ.

Let κ ∈ [−tf , 0] be such that

g(r(κ)) = max
s∈[−tf ,0]

g(r(s)).

We then have

ϑ(r0, tf , z0)− ϑ(r̂0, tf , ẑ0) ≤
∨

i

[

J it (r(0))− zi(−tf )
]

∨

ν(r(0))
∨

g(r(κ))

−
∨

i

[

J it (r̂(0))− ẑi(−tf )
]

∨

ν(r̂(0))
∨

g(r̂(κ)) + ǫ.

Using Proposition Appendix A.1, we distinguish the following cases.
Case A: g(r(κ)) ≥ ∨

i

[

J it (r(0))− zi(−tf )
]
∨

ν(r(0))

ϑ(r0, tf , z0)− ϑ(r̂0, tf , ẑ0) ≤
g(r(κ))−

∨

i

[

J it (r̂(0))− ẑi(−tf )
]

∨

ν(r̂(0))
∨

g(r̂(κ)) + ǫ

≤ g(r(κ))− g(r̂(κ)) + ǫ ≤ Lge
(tf+κ)Lf ||r0 − r̂0||+ ǫ,

where the last inequality is due to the fact that g is Lipschitz continuous.
Case B : ν(r(0)) ≥ ∨

i

[

J it (r(0))− zi(−tf )
]
∨

g(r(κ))

ϑ(r0, tf , z0)− ϑ(r̂0, tf , ẑ0) ≤
ν(r(0))−

∨

i

[

J it (r̂(0))− ẑi(−tf )
]

∨

ν(r̂(0))
∨

g(r̂(κ)) + ǫ

≤ ν(r(0))− ν(r̂(0)) + ǫ ≤ Lνe
tfLf ||r0 − r̂0||+ ǫ

Case C :
∨

i

[

J it (r(0))− zi(−tf )
]

≥ g(r(κ))
∨

ν(r(0))
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Recall (27), then under Assumption 2.2, any two trajectories z and ẑ recon-
structed from Jr with z0 and ẑ0, respectively, are bounded within a given time
interval [−t, 0]. To see this,

||z(−t)− ẑ(−t)|| ≤ ||z0 − ẑ0||+
∫ 0

−t

||Jr(r(s),u(s))− Jr(r̂(s), û(s))||ds

≤ ||z0 − ẑ0||+ Lr

∫ 0

−t

||r(s)− r̂(s)||ds

≤ ||z0 − ẑ0||+ Lr

∫ 0

−t

||r0 − r̂0||e(tf+s)Lf ds

≤ ||z0 − ẑ0||+ ||r0 − r̂0||Lre
tfLf

1− e−tLf

Lf
,

where the third inequity is due to Proposition Appendix A.1, and the last one
follows by performing the integration.

Next, let j ∈ [1, . . . , p] be such that

Jjt (r(0))− zj(−tf ) =
∨

i

[

J it (r(0))− zi(−tf )
]

.

Then it follows, that

ϑ(r0, tf , z0)− ϑ(r̂0, tf , ẑ0) ≤
∨

i

[

J it (r(0))− zi(−tf )
]

−
∨

i

[

J it (r̂(0))− ẑi(−tf )
]

∨

ν(r̂(0))
∨

g(r̂(κ)) + ǫ

≤
∨

i

[

J it (r(0))− zi(−tf )
]

−
∨

i

[

J it (r̂(0))− ẑi(−tf )
]

+ ǫ

≤
[

Jjt (r(0))− zj(−tf )
]

−
[

Jjt (r̂(0))− ẑj(−tf )
]

+ ǫ

≤
[

Jjt (r(0))− Jjt (r̂(0))
]

−
[

zj(−tf )− ẑj(−tf )
]

+ ǫ

By Proposition Appendix A.1 and under Assumption 4.5

[

Jjt (r(0))− Jjt (r̂(0))
]

≤ Lt||r0 − r̂0||etfLf .

Finally, this yields the relationship

[

Jjt (r(0))− Jjt (r̂(0))
]

−
[

zj(−tf )− ẑj(−tf )
]

+ ǫ

≤ ||z0 − ẑ0||+ ||r0 − r̂0||
[

Lte
tfLf + Lr

etfLf − 1

Lf

]

+ ǫ.
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Thus in every case, on an interval [0, tf ] there exists a set of constants Cr and
Cz, such that

ϑ(r0, tf , z0)− ϑ(r̂0, tf , ẑ0) ≤ Cr||r0 − r̂0||+ Cz||z0 − ẑ0||+ ǫ

The same argument conducted with (r0, tf , z) and (t̂f , r̂0, ẑ) reversed establishes
that

ϑ(r̂0, tf , ẑ0)− ϑ(r0, tf , z0) ≤ Cr||r0 − r̂0||+ Cz||z0 − ẑ0||+ ǫ.

Since ǫ is arbitrary, we conclude that

||ϑ(r̂0, tf , ẑ0)− ϑ(r0, tf , z0)|| ≤ Cr||r0 − r̂0||+ Cz||z0 − ẑ0||,

thus concluding the proof.

The proof for ω is similar to that of ϑ and will therefore be omitted in the
interest of space.

Appendix C. Derivation of the optimal thrust angles

Notice that since the applied thrust, T , is always positive, the term

(q4 cosα+ sinα (q5 sin δ + q6 cos δ))

in the Hamiltonian can be minimized separately from T .
To this end, we introduce the auxiliary variables

χ(δ) :=
√

q25 + q26 cos (δ − arctan
q5
q6

),

A(δ) :=
√

q24 + χ(δ)2,

using the trigonometric identity

a cosx+ b sinx = R cos (x− arctan
b

a
),

with R =
√
a2 + b2. First optimizing over α, and subsequently over δ (notice

that this sequential minimization is exact since A(δ) ≥ 0) results in

min
α,δ∈[−π,π]×[−π

2
,π
2
]
(q4 cosα+ sinα (q5 sin δ + q6 cos δ))

= min
δ∈[−π

2
,π
2
]
A(δ) min

α∈[−π,π]
cos (α− arctan

χ(δ)

q4
).

Thus, the optimal thrust angles are given by

α∗(δ) := ±π + arctan
χ(δ)

q4
.
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Since cos (α∗(δ)− arctan χ(δ)
q4

) = −1, after applying α∗(δ), it follows that

δ∗ ∈ argmin
δ∈[−π

2
,π
2
]

−A(δ) = arctan
q5
q6

± π.

Subsequently,

q4 cosα
∗ + sinα∗ (q5 sin δ

∗ + q6 cos δ
∗) = −

√

q24 + q25 + q26 . (C.1)

Substituting (C.1) into (17) results in (18) which depends in an affine fashion
on T .

28


