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Abstract— We propose a reachability approach for infinite
and finite horizon multi-objective optimization problems for
low-thrust spacecraft trajectory design. The main advantage
of the proposed method is that the Pareto front can be
efficiently constructed from the zero level set of the solution
to a Hamilton-Jacobi-Bellman equation. We demonstrate the
proposed method by applying it to a low-thrust spacecraft
trajectory design problem. By deriving the analytic expression
for the Hamiltonian and the optimal control policy, we are
able to efficiently compute the backward reachable set and
reconstruct the optimal trajectories. Furthermore, we show
that any reconstructed trajectory will be guaranteed to be
weakly Pareto optimal. The proposed method can be used as a
benchmark for future research of applying reachability analysis
to low-thrust spacecraft trajectory design.

I. INTRODUCTION

Reachability analysis is an important research topic in the
dynamics and control literature and has been used extensively
for controller synthesis of complex systems [1], [2]. In recent
years we have also seen the use of reachability theory to
design controllers that keep the state of the system in a ”safe”
part of the state space while steering the system towards a
target set. Typically, these approaches rely on the compu-
tation of a capture basin (i.e. the set of points from which
the target set can be safely reached within a given finite
time). Computing such capture basins using a Hamilton-
Jacobi-Bellman (HJB) approach has been shown in [3]–[7].
In [8] the authors propose an extension of the HJB approach
to solve an infinite horizon multi-objective optimization
problem (MOP) with state space constraints. Intuitively, in
a multi-objective optimal control problem, one seeks to find
the minimum control effort way a dynamical system can
perform a certain task, while minimizing or maximizing a
set of, usually contradictory and incommensurable, objective
functions [9]. A common example is found in spacecraft
trajectory design, where the objective is to minimize the
consumed propellant as well as transition time between two
given orbits. However, since the final time is chosen as an
optimization parameter, the approach described in [8] is no
longer applicable. We, therefore, propose an extension that
parameterizes the final time as an optimization variable by
converting an infinite horizon control problem to a finite
horizon one. The advantage of the proposed technique is that
we are able to efficiently construct the Pareto front and opti-
mal trajectories from the solution of a single HJB equation.
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This can make the comparison of multiple trajectories vastly
more efficient compared with typical shooting methods [10].
This paper is organized into five sections. Section II contains
details regarding the derivations of the spacecraft dynamics
as well as the definitions of the constraints pertaining its
behavior. In Section III the optimal control problem is
formulated and the set of optimal trajectories is derived from
the unique viscosity solution of a HJB equation. Section IV
summarizes the simulation results obtained and discusses
the numerical implementation. Finally, Section V provides
concluding remarks and directions for future work. Most
of the proofs have been omitted, but can be found in the
extended version of the paper [11].

II. MODELING

A. Spacecraft equations of motion

The spacecraft thrust can be modeled using the input
u(t) :=

[
ux(t),uy(t),uz(t)

]T ∈ U where U is the set of
possible control inputs. u ∈ Uad denotes the control policy
and Uad denotes the set of admissible policies which is the
set of Lebesgue measurable functions from [0,+∞] to U .
Boldface notation is used to denote trajectories and non
boldface notation is used to denote scalars and vectors.

The equations of motion of a particle or spacecraft around
a rotating body can be expressed in 3-dimensional Euclidean
space as a second-order ordinary differential equation [12]

2Ω(t)× ∂R(t)

∂t
+ Ω(t)× (Ω(t)× R(t)) +

∂U(R(t))

∂R

+
∂Ω(t)

∂t
× R(t)− u(t)

m(t)
= −∂

2R(t)

∂t2
, (II.1)

where R(t) is the radius vector from the asteroids center of
mass to the particle, the first and second time derivatives
of R(t) are with respect to the body-fixed coordinate system,
U(R(t)) is the gravitational potential of the asteroid and Ω is
the rotational angular velocity vector of the asteroid relative
to inertial space. We consider an asteroid rotating uniformly
with constant magnitude ω around the z-axis. Therefore, the
euler forces ∂Ω(t)

∂t ×R(t) can be neglected and we can express
the rotation vector as Ω := ω ·ez , where ez is the unit vector
along the z-axis. Following [13], the radius vector and its
derivatives are given by R(t) :=

[
x(t),y(t), z(t)

]T
, ∂R(t)

∂t =[
vx(t),vy(t),vz(t))

]T
. The coriolis and centrifugal forces



(the first two terms in (II.1)) acting on the spacecraft are

2Ω×∂R(t)

∂t
=

−2ωvy(t)
2ωvx(t)

0

 ,Ω×(Ω×R(t)) =

−ω2x(t)
−ω2y(t)

0

 .
(II.2)

Let us define the state vector r :=[
x, y, z, vx, vy, vz,m

]T ∈ R7. Then following our
derivations from (II.1) we can formulate the system
dynamics of the spacecraft as

ṙ = f̃(r, u) =



vx
vy
vz

Ux(x, y, z) + ω2x+ 2ωvy + ux
m

Uy(x, y, z) + ω2y − 2ωvx +
uy
m

Uz(x, y, z) + uz
m

−
√
u2
x+u2

y+u2
z

vexhaust


, (II.3)

where vexhaust is the exhaust velocity, Ux, Uy and Uz are
the derivatives of the gravitational potential in the direction
ex, ey and ez , respectively and where for brevity we neglect
the time dependence by denoting r = r(t), vx = vx(t) etc.

B. State constraints

In order to ensure that the derived spacecraft dynamics
hold, we need to enforce state constraints on x, y, z as well
as on the mass m.

Assuming that the burnout mass of the spacecraft is the
same as the dry mass, then the total mass of the spacecraft
is bounded by the amount of propellant available. We set
mmin := mdry and mmax := mdry + mpropellant. Since
using all the propellant is never physically possible mmin

is formulated as a strict inequality.
Due to particles ejected from the asteroid, we do not want

to fall below a circular orbit with radius ρ :=
√
x2 + y2 + z2

of approximately ρmin = 1 km. Furthermore, we need to
stay within the sphere of influence (SOI) of the asteroid.

The SOI can be approximated by ρSOI ≈ a
(
M1

M2

) 2
5

, where
a is the semi-major axis of the asteroid’s orbit around the
sun (1.5907 · 108 km), M1 is the Mass of the asteroid
(1.4091·1012 kg) and M2 is the mass of the sun (1.9890·1030

kg). Therefore, the sphere of influence of the asteroid is
approximately ρmax = 8.74 km. Let us denote the set of
states that satisfy the above assumptions as

K0 :=
{
r ∈ R7 : ρ ∈ [ρmin, ρmax],m ∈ (mmin,mmax]

}
,

and let K0 denote the closure of K0 and K̊0 the interior.
Whenever we approach the boundary of K0, we wish to

be able to recover and reenter the interior K̊0. We, therefore,
restrict ourselves to the set K := {r ∈ K0|∃u ∈ U : f(r, u) ·
ηr < 0}, where ηr is the exterior normal vector to K at r.
Recall that this need not hold for m = mmin /∈ K0. Overall,
the set of state constraints we consider is encoded by the
set K, while the target orbit that we would like to transfer
to lies within the nonempty closed target set C ⊂ K defined
as C := {r ∈ K : |rtarget − r|< ε}, where ε > 0 is an
arbitrary tolerance.

III. OPTIMAL CONTROL PROBLEM

The multi-objective optimal control problem can be for-
mulated as a minimization problem using two objective
functions in Mayer form. The first goal is to maximize the
remaining mass, the second minimizes the required time for
the orbit change, i.e. the terminal time. However, as the
terminal time tf is unknown, we introduce a change of the
time variable, i.e. for every tf ∈ [0,+∞):

ttf (s) := t0 + s (tf − t0) for s ∈ [0, 1].

The new dynamics of the fixed final horizon problem
(where the final horizon is 1 and t0 := 0) are then as follows:

f(r, u, tf ) = (tf − t0)f̃(r, u)

⇒


ṙ(s) = f(r(s),u(s), ζ(s)) s ∈ [κ, 1]

ζ̇(s) = 0 s ∈ [κ, 1]

r(κ) = r0

ζ(κ) = tf

, (III.1)

where κ is chosen from [0, 1] and r0 is an initial state. The
solution r belongs to the Sobolev space W1,1([κ, 1];R7). The
set of trajectory-control pairs on [0, 1] starting at r0 with
terminal time tf is denoted as:

Πr0,tf := {(r,u) : ṙ(s) = f(r(s),u(s), ζ(s)), s ∈ [0, 1];

r(0) = r0, ζ(0) = tf} ⊂W1,1([0, 1];R7)× Uad.

Similarly, the set of admissible (in the sense of satisfying the
state constraints) trajectory-control pairs on [0, 1] starting at
r0 with terminal time tf is denoted as:

ΠK,Cr0,tf := {(r,u) ∈ Πr0,tf : r(s) ∈ K for s ∈ [0, 1];

r(1) ∈ C̊} ⊂W1,1([0, 1];R7)× Uad.

Using Assumption 3.1 and 3.2 that will be defined in
Section III-B, as well as Filippov’s Theorem [14], we can
conclude, that ΠK,Cr0,tf is compact.

Finally, the set of admissible terminal time and state pairs
is denoted as

π := {(r0, tf ) ∈ K×[0,+∞) such that ΠK,Cr0,tf 6= ∅}.

For a given terminal state rf ∈ R7 and terminal time tf ∈
[0,+∞), we can define the costs functions as J1(rf , tf ) :=
−rf 7 and J2(rf , tf ) := tf , where rf 7 denotes the 7th
element of the state vector rf (the mass in our case). The
2-dimensional objective function J : R7 × [0,+∞) → R2

can then be written as J(rf , tf ) := [J1(rf , tf ), J2(rf , rf )].
We are now in a position to formulate the multi-objective

optimal control problem (MOC) under study by
inf J(r(1), tf )

tf ∈ [0,+∞)

(r,u) ∈ ΠK,Cr0,tf .

(III.2)



A. Pareto Optimality

Before discussing how to solve (III.2), we will introduce
two important concepts that are relevant when discussing
multi-objective optimization. The first will be that of domi-
nance between two admissible control pairs and the second
will be weak and strong Pareto optimality [15].

Definition 3.1: A vector a is considered less than b (de-
noted a < b) if for every element ai and bi the relation
ai < bi holds. The relations ≤,≥, > are defined in an
analogous way.

Definition 3.2: Let (r0, tf ), (r0, t̂f ) ∈ π. We consider the
trajectory-control pairs (r,u) ∈ ΠK,Cr0,tf and (x,v) ∈ ΠK,C

r0,t̂f
.

1) The trajectory r dominates x if J(r(1), tf ) ≤
J(x(1), t̂f ) and J(r(1), tf ) 6= J(x(1), t̂f ).

2) The trajectory r strictly dominates x if J(r(1), tf ) <
J(x(1), t̂f ).

Definition 3.3: Let (r0, tf ) ∈ π. We consider the
trajectory-control pairs (r,u) ∈ ΠK,Cr0,tf .

1) The trajectory r is considered weakly Pareto opti-
mal if ∀t̂f ∈ [0,∞),@(x,v) ∈ ΠK,C

r0,t̂f
such that

J(x(1), t̂f ) < J(r(1), tf ).
2) The trajectory r is considered strictly Pareto opti-

mal if ∀t̂f ∈ [0,∞),@(x,v) ∈ ΠK,C
r0,t̂f

such that

J(x(1), t̂f ) ≤ J(r(1), tf ).
Following Definition 3.3, a trajectory r is considered

weakly Pareto optimal if it is not possible to improve all
its performance metrics J1(r(1), tf ), J2(r(1), tf ) simulta-
neously. On the other hand, a trajectory r is considered
stongly Pareto optimal if no other admissible trajectory can
ameliorate its performance metrics J1(r(1), tf ), J2(r(1), tf )
without deteriorating the other.

Letting (r,u) ∈ ΠK,Cr0,tf and z :=

(
z1

z2

)
∈ R2, we now

study how we can reconstruct Pareto optimal trajectories.
First, we will choose a value function ϑ : R7 × R2 → R,
discussed further in Section III-B, such that for any tf ∈
[0,∞) the following holds:

ϑ(r0, z) ≤ 0 ⇐⇒
[
∃(r,u) ∈ ΠK,Cr0,tf , J1(r(1), tf ) ≤ z1

and J2(r(1), tf ) ≤ z2

]
, (III.3)

∀z, z‘ ∈ R2, z ≤ z‘⇒ ϑ (r0, z) ≥ ϑ (r0, z‘) . (III.4)

To discuss the following theorem, we introduce the utopian
point J∗(r0), which is the lower bound of J , defined
elementwise as

J∗i (r0) := inf
{(r(1),tf )|∃tf :(r0,tf )∈π;(r,u)∈ΠK,Cr0,tf

}
Ji(r(1), tf ).

(III.5)
Furthermore, for the remainder of the paper, a

∨
b will de-

note max(a, b) and
∨
i xi will denote the maximum element

of the vector x.
Theorem 3.1: Let z∗1(r0) and z∗2(r0) be the two utopian

values of J1 and J2 for a given initial state r0 and let us

define z∗(r0) :=

(
z∗1(r0)
z∗2(r0)

)
and µ :=

(
µ1

µ2

)
∈ R2

≥0.

Moreover, let ΠK,Cr0,z∗2 (r0) 6= ∅. We consider the extended
function Θr0 : [0, 1]2 → [0,∞] defined as follows:

Θr0(µ) := inf
{
τ ≥ 0 | ϑ(r0, z

∗(r0) + µτ) ≤ 0

and τ <
mpropellant

µ1

}
∈ [0,∞].

Let us define the 1-dimensional manifold:

Σr0 :=
{(

z∗1(r0)
z∗2(r0)

)
+µ·Θr0(µ), µ :=

(
µ1

µ2

)
∈ [0, 1]2

with µ1 + µ2 = 1
}
.

Any trajectory reconstructed from Σr0 , is guaranteed to be
weakly Pareto optimal.

Since weak Pareto optimality is of less relevance com-
pared to strong Pareto optimality, we make the following
observation.

Lemma 3.1: The set of Pareto optimal values z, called the
Pareto front F , is a subset of Σr0 .
Following Lemma 3.1, we can construct the Pareto front from
Σr0 by eliminating all points from Σr0 that are dominated.
For a discretized approximation of Σr0 , this can be done
by iteratively removing any point z that is dominated. Thus
in conclusion, using the value function ϑ, we are able to
determine Pareto optimal solutions by constructing the set
Σr0 and simply eliminating dominated points.

B. Auxiliary value function

We now describe how the value function ϑ and the set Σr0
can be computed. First, let g(r) and ν(r) be two Lipschitz
functions (with Lipschitz constants Lg and Lν , respectively)
chosen such that

g(r) ≤ 0 ⇐⇒ r ∈ K,
ν(r) ≤ 0 ⇐⇒ r ∈ C.

This can be achieved by choosing g(r) and ν(r) as signed
distances to the sets K and C, respectively. Then, by letting

(r,u) ∈ ΠK,Cr0,tf and z :=

(
z1

z2

)
∈ R2, we can describe

the epigraph of the MOC problem, as defined in (III.2), by
using the auxiliary value function ω:

ω(κ, r0, z, tf ) := inf
(r,u)∈Πr0,tf

{∨
i

Ji(r(1), tf )− zi∨
ν(r(1))

∨
max
s∈[κ,1]

g(r(s))
}
. (III.6)

Since, ω(κ, r0, z, tf ) ≤ 0 implies that we have found an
admissible trajectory that remains within K, by limiting z1

to z1 < −mmin it follows that:

0 ≥ ω(κ, r0, z, tf ) ≥ J1(r(1), tf )− z1 = −mfinal − z1

⇐⇒ mfinal ≥ −z1 > mmin,

and thus the solution r lies within K.



For the following theorem, we need to make two assump-
tions about the spacecraft dynamics.

Assumption 3.1: For every r ∈ K the set
{
f̃(r, u) : u ∈

U
}

is a compact convex subset of R7.

Assumption 3.2: f̃ : K × U → R7 is bounded and there
exists an Lf > 0 such that for every u1, u2 ∈ U ,

|f̃(r1, u1)− f̃(r2, u2)|≤ Lf |r1 − r2|.

Moreover, following Assumption 3.1 there exists a cf > 0

such that for any r ∈ K we have max {|f̃(r, u)|: u ∈ U} ≤
cf (1 + |r|).

Under Assumption 3.2 and following the Picard-Lindelöf
theorem, for any control policy u ∈ Uad, any initial starting
orbit r ∈ K and terminal time tf ≥ 0, the system admits
a unique, absolutely continuous solution on [0, tf ] [16]. By
introducing the Hamiltonian H : R7 × R× R7 → R

H(r, tf , q) := min
u∈U

(
qT · f(r, u, tf )

)
,

we are able to now state how the auxiliary value function
can be obtained.

Theorem 3.2: The auxiliary value function ω is the unique
viscosity solution of the following HJB equation

min(∂κω +H(r, tf ,∇rω), ω(κ, r, z, tf )− g(r)) = 0
for κ ∈ [0, 1), r ∈ K, z ∈ R2, tf ∈ [0,+∞),

ω(1, r, z, tf ) =
(
−r7 − z1

∨
tf − z2

∨
ν(r)

∨
g(r)

)
for r ∈K, z ∈ R2, tf ∈ [0,+∞),

Since the Dynamic Programming Principle holds for 0 ≤
κ ≤ κ+ h ≤ 1, r0 ∈ K and z ∈ R2 with h ≥ 0:

ω(κ, r0, z, tf ) = inf
(r,u)∈Πr0,tf

{
ω(κ+ h, r(κ+ h), z, tf )∨

max
s∈[κ,κ+h]

g(r(s))
}
,

the proof of Theorem 3.2 follows standard arguments for
viscosity solutions, as shown in [3]. We will subsequently
make some observations about the auxiliary value function
ω.

Proposition 3.1: The auxiliary value function ω is Lips-
chitz continuous.
The proof of this Proposition follows from [17] and can be
found in [11].

Proposition 3.2: Let (κ, r0, tf ) ∈ [0, 1] × R7 × [0,+∞).
The function ω(κ, r0, z, tf ) has the following property:

∀z, z‘ ∈ R2, z ≤ z‘⇒ ω (κ, r0, z, tf ) ≥ ω (κ, r0, z‘, tf ) .

Proof: Let (κ, r0, tf ) ∈ [0, 1] × R7 × [0,+∞) and
z, z‘ ∈ R2 with z ≤ z‘. Then for all i ∈ 1, 2, Ji(r(1), tf )−
zi‘ ≤ Ji(r(1), tf )− zi,, and consequently[∨

i

Ji(r(1), tf )− zi‘

]
≤

[∨
i

Ji(r(1), tf )− zi

]
.

Taking the maximum ν(r(1))
∨

maxs∈[κ,1] g(r(s)) and the
infimum over all (r,u) ∈ Πr0,tf , it follows from the last
equation that ω (κ, r0, z‘, tf ) ≤ ω (κ, r0, z, tf ).

We now use the auxiliary value function ω to define ϑ and
show that ϑ satisfies the requirements given in Section III-A.

ϑ(r0, z) := min
tf

ω(0, r0, z, tf ).

Lemma 3.2: Let r0 ∈ R7. Then ∀z, z‘ ∈ R2, z ≤ z‘ ⇒
ϑ (r0, z) ≥ ϑ (r0, z‘).

Having shown how to construct ϑ from the solution of
a HJB equation, we are now in the position to state and
prove the following theorem, which is the main result of
this section.

Theorem 3.3: Σr0 is defined by the zero level set of the
value function ϑ, i.e., Σr0 =

{
z ∈ R2|ϑ(r0, z) = 0

}
.

IV. NUMERICAL APPROXIMATION AND RESULTS

A. Numerical approximation of ω

Ultimately, the goal is to compute the set Σr0 and the
corresponding optimal trajectories. First, however, we will
need to discuss how ω is computed from the HJB equation
given in Theorem 3.2. Since the term J2(r(1), tf )− z2 does
not depend on the system dynamics, we can omit it from the
initial condition of the auxiliary value function ω, and simply
take the maximum of ω(0, r0, z, tf ) and J2(r(1), tf ) − z2

to obtain the original ω(0, r0, z, tf ), had J2(r(1), tf ) − z2

been included in the initial condition. This approach stems
from an idea of system decomposition presented in [18] and
allows us, for the sake of solving the HJB equation, to omit
one grid dimension, z2. To solve the HJB equation we need
to consider a uniform spaced grid G = {r, z1, tf} on K ×
R× [0,+∞), which enables us to use the Level Set Toolbox
described in [19] as well as some extensions presented in
[20].

Numerical results have shown that by sufficiently con-
straining the considered grid points, we get an acceptable
approximation of the set K. Since K0 constrains the radius
ρ, it is more efficient to compute the auxiliary value function
ω in spherical coordinates. Let us define

[
aρ, aθ, aψ

]T
as

the appropriate transformation of ax := Ux(x, y, z) +ω2x+
2ωvy , ay := Uy(x, y, z)+ω2y−2ωvx and az := Uz(x, y, z).
Then we can restate the system dynamics in spherical coor-
dinates as

ṙ =



vρ
vθ
vψ

aρ + T
m cosα

aθ + T
m sinα sin δ

aψ + T
m sinα cos δ
− T
vexhaust


, (IV.1)

where vρ, vθ and vψ are the velocities in the direction er, eθ
and eψ , respectively. The input u(t) is redefined for spherical
coordinates as usph(t) := (α(t), δ(t),T(t)) ∈ U , where
α(t) ∈ [−π, π] is the incidence angle, δ(t) ∈ [−π2 ,

π
2 ] is

the sideslip angle and T(t) ∈ [0, Tmax] is the variable thrust.



To obtain a numerical approximation of ω, we use a
Lax-Friedrich Hamiltonian with an appropriate fifth-order
weighted essentially non-oscillatory scheme as detailed in
[21]. As the PDE is solved backwards in time using a finite
difference scheme, the Hamiltonian is given by H(r, q) :=
−minu∈U (f(r, u, tf ) · q), where q ∈ R7 is the costate vec-
tor. Let us consider the term C(r, q) := q0vρ+q1vθ+q2vψ+
q3aρ + q4aθ + q5aψ . Then we can write the Hamiltonian as
follows

H(r, tf , q) := −tf min
u∈U

( T
m

(q3 · cosα

+sinα (q4 · sin δ + q5 · cos δ) )−q6·
T

vexhaust

)
−tf ·C(r, q).

As T is always positive, we can minimize the
term (q3 · cosα+ sinα (q4 · sin δ + q5 · cos δ)) separately.
We can rewrite the trigonometric functions a cosx+ b sinx
to R cos (x− arctan b

a ) with R =
√
a2 + b2. We, there-

fore, introduce the auxiliary variables χ(δ) :=
√
q2
4 + q2

5 ·
cos (δ − arctan q4

q5
) and A(δ) :=

√
q2
3 + χ(δ)2. We can first

optimize over α, and subsequently over δ (notice that this
sequential minimization is exact since A(δ) ≥ 0)

min
α,δ∈[−π,π]×[−π2 ,

π
2 ]

(q3 cosα+ sinα (q4 sin δ + q5 cos δ))

= min
δ∈[−π2 ,

π
2 ]
A(δ) · min

α∈[−π,π]
cos (α− arctan

χ(δ)

q3
).

This results in the optimal thrust angles α∗(δ) :=

π + arctan χ(δ)
q3

. Since cos (α∗(δ)− arctan χ(δ)
q3

) =
−1, after applying α∗(δ), it follows that δ∗ :=
arg minδ∈[−π2 ,

π
2 ]−A(δ) = arctan q4

q5
± π. Subsequently,

since
√
q2
3 + q2

4 + q2
5 ≥ A(δ),

q3 cosα∗+sinα∗ (q4 sin δ∗ + q5 cos δ∗) = −
√
q2
3 + q2

4 + q2
5 .

(IV.2)
The results of (IV.2) allow us to minimize with respect T ,
i.e.

H(r, tf , q) = −tf min
T∈[0,Tmax]

(
− T

m
·
√
q2
3 + q2

4 + q2
5

− q6 ·
T

vexhaust

)
− tf · C(r, q)

⇒ T ∗ :=

{
Tmax if q6

vexhaust
+

√
q23+q24+q25
m ≥ 0

0 otherwise
.

Finally, applying T ∗ and substituting −min(−·) for max(·),
the Hamiltonian becomes

H(r, tf , q) := −tf · C(r, q)+

tf max
(
q6 ·

Tmax

vexhaust
+
Tmax

m

√
q2
3 + q2

4 + q2
5 , 0
)
.

As in [6], we can use this simplified expression of the
Hamiltonian to achieve significant computational savings
when computing ω. For a discussion of the convergence of
ω and the derivation of a necessary Courant-Friedrichs-Lewy
condition, we refer to [22] and [19], respectively.

B. Optimal trajectory reconstruction

The optimal control policy and trajectory (r,u) ∈ ΠK,Cr0,tf
can be constructed efficiently using the approximation of ω
over G. For a given N ∈ N we consider the timestep h = 1

N

and a uniform grid with spacing sk = k
N of [0, 1]. Let us

define the state (rk)k=0,...,N and control (uk)k=0,...,N−1 for
the numerical approximation of the optimal trajectory and
control policy. Setting r0 as the initial orbit and choosing
an appropriate z, we determine arg mintf ω(s0, r0, z, tf ) to
find a corresponding tf . We then proceed by iteratively
computing the control value

uk(rk) = arg min
u∈U

ω(sk, rk + hf(rk, u, tf ), z, tf )
∨
g(rk).

For a given ω(sk, rk, z, tf ) this is done by numerically taking
the partial derivatives along each grid direction to estimate
the costate vector q and then determining the optimal control
value as the minimizer of the Hamiltonian H . After uk is
determined we compute rk+1 using an appropriate Adams-
Bashforth-Moulton method and increment k.

C. Simulation results

To illustrate the theoretical results of the previous sections,
we consider a spacecraft on an unstable initial orbit around
asteroid Castalia 4769. The initial orbit spirals towards the
asteroid and the spacecraft needs to make an orbit correction
to a stable nominal target orbit so as to prevent a collision
with the asteroid. The gravity of Castalia 4769 was modeled
by means of a spherical harmonic expansion as discussed in
[23].

For the numerical computation we considered the planar
case, omitting the states ψ and v⊥. The spacecraft is modeled
with 1000 kg of dry mass, 100 N of maximum thrust and an
exhaust velocity of 40 km/s. Using a target orbit with radius
6.1175 km and tangential velocity of −0.0025 km/s as well
as 0.2 kg of propellant, we are able to compute the numerical
approximation of ω. Following Theorem 3.1 and Theorem
3.3, any z that satisfies mintf ω(0, r0, z, tf ) = ϑ(r0, z) = 0
must belong to the set Σr0 . Using an initial orbit with radius
6.11 km and tangential velocity of −0.0026 km/s, we are
able to compute Σr0 by plotting the zero level set of ϑ(r0, z),
as shown in Fig. 1. Taking an arbitrary z from Σr0 and find-
ing the minimal optimal time tf = arg mintf ω(0, r0, z, tf ),
we are able to construct the optimal trajectory as described
in Section IV-B and shown in Fig. 2.

V. CONCLUSION

An approach to solving infinite and finite horizon multi-
objective minimum time optimization problems was pre-
sented. Furthermore, we proved that strong and weak Pareto
optimal values can be efficiently constructed from the zero
level set of the unique viscosity solution of a Hamilton-
Jacobi-Bellman equation. The feasibility and effectiveness of
the proposed approach was demonstrated by applying it to
the problem of low-thrust trajectory design. Future research
concentrates towards constructing approximations of the
reachable set and decomposing the optimization parameters
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Fig. 1. Σr0 constructed from the zero level set of ϑ.
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Fig. 2. The initial orbit is given by the dashed line, the optimal transfer
trajectory (corresponding to the z pair [−0.18, 26.9]) is reconstructed as
described in IV-B and is given by the solid line, and the final orbit after
the transition is complete is shown by the dotted line. The direction and
magnitude of the continuous thrust is represented by the discretized set of
solid lines shown along the transfer trajectory.

efficiently, so as to allow higher accuracy and computational
efficiency.
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