
State Aggregation for Distributed Value Iteration in Dynamic Programming

Nikolaus Vertovec Kostas Margellos

Abstract— We propose a distributed algorithm to solve a
dynamic programming problem with multiple agents, where
each agent has only partial knowledge of the state transition
probabilities and costs. We provide consensus proofs for the
presented algorithm and derive error bounds of the obtained
value function with respect to what is considered as the
”true solution” obtained from conventional value iteration.
To minimize communication overhead between agents, state
costs are aggregated and shared between agents only when the
updated costs are expected to influence the solution of other
agents significantly. We demonstrate the efficacy of the proposed
distributed aggregation method to a large-scale urban traffic
routing problem. Individual agents compute the fastest route to
a common access point and share local congestion information
with other agents allowing for fully distributed routing with
minimal communication between agents.

Index Terms— Dynamic programming; Value iteration; Con-
sensus; Distributed algorithms.

I. INTRODUCTION

Value iteration is a well-established method for solving
dynamic programming problems, yet it exhibits scalability
issues for applications with a large state space. To this end,
state aggregation can be used to reduce the number of states
that need to be considered. The aggregation approach has a
long history in scientific computing with applications ranging
from the improvement of Galerkin methods [1], to solving
large-scale optimization models [2], and dynamic program-
ming [3]. In [4] it is shown how the aggregation approach
can be used in conjunction with value iteration, however, for
problems with large decision spaces and potentially cost and
transition probabilities that evolve over time, conventional
aggregation will still be hampered by scalability issues. To
this end, we propose a multi-agent value iteration algorithm
that utilizes aggregation to minimize communication over-
head and allows for solving dynamic programming problems
where each agent has only partial knowledge of the state
transition costs and probability.

Value iteration has been expanded to a multi-agent frame-
work for the class of problems that contain a joint decision
space [5], yet in this approach no restrictions are imposed
as far as the agents’ knowledge of the underlying transition
probabilities and costs are concerned. Such restrictions have
been considered for small-scale problems as in [6], however,
require a centralized critic for estimating the expected team
benefit in a non-cooperative setting.

For the purpose of Open Access the authors have applied a CC BY
public copyright licence to any Author Accepted Manuscript (AAM) ver-
sion arising from this submission. The authors are with the Department
of Engineering Science, University of Oxford. Email:{nikolaus.vertovec,
kostas.margellos}@eng.ox.ac.uk

The proposed framework differs from many multi-agent
reinforcement learning approaches that utilize sharing a
weighted average of agents’ local estimated value. Rather
than considering a set of global states shared by all the agents
in conjunction with a local reward observed by individual
agents as in [7], [8], we consider a Markov Decision Pro-
cess (MDP) partitioned among agents with the objective of
determining in a distributed manner the global value function
without disclosing information on the transition probabilities
and costs among agents.

This paper performs the following main contributions: (i)
We propose a distributed value iteration algorithm for multi-
agent dynamic programming, preventing transition probabil-
ities and state costs from constituting global information
among agents; (ii) We provide a rigorous mathematical
analysis on the convergence and optimality properties of
the proposed algorithm, merging tools from multi-agent
consensus and dynamic programming principles; and, (iii)
We demonstrate our scheme on a non-trivial traffic routing
problem.

The rest of the paper is organized as follows. Section II
provides some mathematical preliminaries and introduces the
distributed multi-agent value iteration algorithm. Section III
provides the main statements and associated mathematical
analysis supporting the proposed algorithm. In Section IV we
introduce a traffic routing problem and show how our pro-
posed approach is able to solve the problem in a distributed
manner. Finally, Section V provides concluding remarks and
directions for future work.

II. PROBLEM SETUP

A. Multi-agent Markov Decision Processes

We first introduce a standard MDP that will be expanded
to a multi-agent setting in view of the proposed distributed
algorithm presented in the sequel. We consider a finite set
of n states denoted by X and let g(i, u, j) be the cost-to-go
from state i ∈ X to state j ∈ X , using the input u ∈ U(i),
where U(i) is a finite set of actions/decisions available at
state i. Furthermore, let p(i, u, j) be the transition probability
to transition from state i to state j using the input u, with∑n

j=1 p(i, u, j) = 1. The objective is to solve a global
discounted infinite horizon dynamic programming problem.
The associated Bellman equation is given by J∗(i) =
minu∈U(i)

∑n
j=1 p(i, u, j)[g(i, u, j) + αJ∗(j)], where α ∈

[0, 1) is a discount factor, and J∗ denotes the optimal
value function that satisfies the Bellman identity. Solving the
Bellman equation using conventional value iteration or policy
iteration requires knowledge of all transition probabilities as
well as associated costs.

We consider the setting where a set of q agents collaborate
to solve the aforementioned infinite horizon dynamic pro-
gramming problem in a distributed manner, with only partial
knowledge of the state transition probabilities and costs while
minimizing communication between agents. As such, we
partition the state-space X into q subsets, Iℓ ⊂ X , such
that for all m, ℓ ∈ {1, . . . , q} with m ̸= ℓ, Iℓ∩Im = ∅. Each
agent knows only the state transition probabilities and cost
for transitions originating within its state subset Iℓ, i.e., for
each agent ℓ, gℓ : Iℓ×U ×X → R, pℓ : Iℓ×U ×X → [0, 1].
Using conventional value iteration would require each agent
to share its knowledge of the transition probabilities and
costs, resulting in significant communication overhead. In
the subsequent section, we instead introduce an alternative
method relying on state aggregation that allows solving the
discounted infinite horizon dynamic programming problem
under consideration in a distributed manner where some
tentative information is exchanged only with neighboring
agents.

B. Distributed Value Iteration

We start by aggregating the value function (expected opti-
mal cost-to-go) to construct for each agent ℓ = 1, . . . , q, the
aggregate value, defined as rℓ,ℓ =

∑
i∈Iℓ

dℓiJ(i), where J
constitutes an approximation of the optimal value function of
the Bellman equation, and dℓi is the so-called disaggregation
probability (encoding the contribution of each agent’s value
function to the aggregate one), satisfying for all ℓ = 1, . . . , q,∑

i∈Iℓ
dℓi = 1 and for all i /∈ Iℓ, dℓi = 0. The aggregate

values for each agent, rℓ,ℓ, can be combined into a common
vector denoted by rℓ; tentative values for this vector will
be communicated across all agents. Thus we define rℓ =[
rℓ,1, . . . , rℓ,ℓ, . . . , rℓ,q

]T
. In the sequel, we will define an

iterative scheme, according to which each agent ℓ = 1, . . . q
will update their estimate for the vector rℓ; we denote this
at iteration k, by rkℓ , where its m-th element is indicated by
rkℓ,m, m = 1, . . . , q.

Next, we introduce the aggregation probability satisfying
for all ℓ = 1, . . . , q,

ϕjℓ =

{
1, if j ∈ Iℓ,

0, otherwise.

Such a formulation of the aggregation probability is known
as hard aggregation in the literature [9, p. 311].

To solve the discounted infinite horizon dynamic pro-
gramming problem, we propose a distributed algorithm for
which the pseudocode is given in Algorithm 1 and 2.
The proposed algorithm involves an agent-to-agent com-
munication protocol. At each algorithm iteration k ≥ 0
we consider the directed communication graph (V,E(k)),
where the node set V = {1, . . . , q} includes the agents and
the set E(k), the directed edges (m, l), indicating that at
iteration k agent ℓ can receive information from agent m.
Let EB(k) =

⋃(k+B)
i=k E(i) for some integer B. We make

the fairly standard assumption in the existing literature on
the communication structure between agents [8], [10]:

Assumption 2.1: [Connectivity and Communication]
There exists a positive integer B such that (V,EB(k)) is
fully connected for each iteration k.

Assumption 2.1 implies that for any agent pair (ℓ,m) there
is a direct link at least once every B iterations. This prevents
agents from having to share information with all other agents
at all iterations as well as for the presence of a central
authority.

Initially in Algorithm 1, each agent ℓ, ℓ = 1, . . . , q, starts
with some tentative value of the aggregate vector r0ℓ , and
local cost function V 0

ℓ . The initialization choice is arbitrary.
Utilizing the aggregate vector rkℓ at iteration k ≥ 0, each
agent ℓ locally and in parallel executes Algorithm 2 so as to
construct the updated local value function V k+1

ℓ : Iℓ → R
which will, in turn, yield an updated aggregated cost rk+1

ℓ,ℓ ∈
R (Algorithm 1, Steps 8).

To minimize communication overhead, an updated aggre-
gated cost rk+1

ℓ,ℓ is only shared with other agents in the set
Nℓ(k) (the neighbors of ℓ at iteration k, when the aggre-
gated cost has changed significantly, i.e., ∥rk+1

ℓ,ℓ − rprevℓ,ℓ ∥>
Cthreshold, where rprevℓ,ℓ is the aggregated cost previously
broadcast to other agents and Cthreshold is a communication
threshold (Algorithm 1, Steps 11 - 13), or when agent ℓ and a
neighboring agent m have not communicated in the last B it-
erations (see Step 11; this ensures that there exists a bounded
intercommunication time as required by Assumption 2.1).
For further discussion on the communication threshold to
limit the transmission of insignificant data, we refer to [11].

Until convergence is reached, each agent will repeat the
execution of Algorithm 2 and the subsequent communication
step. Note that at iteration k, the vector rkℓ may contain
aggregate values from other agents received at prior time
steps (Algorithm 1, Step 17). It will be shown in the proof of
Theorem 3.1 that convergence will nevertheless be reached.

We now turn to the update of V k
ℓ and rkℓ,ℓ, performed when

calling Algorithm 2. Each agent uses the local value function,
V k
ℓ , to represent the cost-to-go function at each state i ∈ Iℓ,

and the aggregated cost, rkℓ , to approximate the cost for
states j ∈ X\Iℓ. The local value function is iteratively
updated for each state i ∈ Iℓ (Algorithm 2, Steps 2 - 6).
This update follows from standard value iteration; choosing
the control action at state i that minimizes the expected
cost-to-go (Algorithm 2, Step 4) and using a Gauss-Seidel
update on the local value function to improve convergence
and minimize memory usage (Algorithm 2, Step 5). We
perform an update only to the local value function since we
restrict ourselves to states for which sufficient knowledge
of the transition probabilities and costs is available. After
the local value function has been updated, the updated local
aggregated cost, rk+1

ℓ,ℓ , is computed (Algorithm 2, Step 7).

Notice that Algorithms 1 and 2 prevent disclosing the
transition probabilities to all agents; in contrast, each agent ℓ,
has access only to the probabilities and costs associated with
transitions originating from their partition Iℓ, ℓ = 1, . . . , q.

Algorithm 1 Distributed value iteration
1: Initialization
2: Set r0ℓ ← [0, . . . , 0] for all ℓ = 1, . . . , q
3: Set rprevℓ,ℓ ← 0 for all ℓ = 1, . . . , q

4: Set V 0
ℓ (i)← 0 for all i ∈ Iℓ and ℓ = 1, . . . , q

5: k = 0
6: repeat
7: for each Agent ℓ ∈ 1, . . . , q do
8: V k+1

ℓ , rk+1
ℓ,ℓ ←Agent-Update(V k

ℓ , rkℓ)
9: Nℓ(k) = {m ∈ {1, . . . , q} : (ℓ,m) ∈ E(k)}

10: if ∥rk+1
ℓ,ℓ − rprevℓ,ℓ ∥> Cthreshold,

11: or if (ℓ,m) /∈
⋃k

i=k−B+1 E(i) then
12: Send rk+1

ℓ,ℓ to all agents m ∈ Nℓ(k)
13: end if
14: if receiving information from an agent m then
15: rk+1

ℓ,m ← rk+1
m,m

16: else
17: rk+1

ℓ,m ← rkℓ,m
18: end if
19: end for
20: until ∥rk+1

ℓ − rkℓ ∥≤ tolerence for all ℓ = 1, . . . , q

Algorithm 2 Agent-Update
1: function AGENT-UPDATE(V k

ℓ , rkℓ)
2: for i ∈ Iℓ do
3: V k+1

ℓ (i)← minu∈U(i)

∑n
j=1 pℓ(i, u, j)[gℓ(i, u, j)

4: +α(ϕjℓV
k
ℓ (j) +

∑q
m=1
m ̸=ℓ

ϕjmrkℓ,m)]

5: V k
ℓ (i)← V k+1

ℓ (i)
6: end for
7: rk+1

ℓ,ℓ ←
∑

j∈Iℓ
dℓjV

k+1
ℓ (j)

8: return V k+1
ℓ , rk+1

ℓ,ℓ

9: end function

III. ALGORITHM ANALYSIS

The following theorem is the main result of this section.
Theorem 3.1: Consider Assumption 2.1. Algorithm 1 con-

verges asymptotically to a common value for r among
agents, i.e., there exists r̄ such that for all ℓ = 1, . . . , q,
limk→∞∥rkℓ − r̄∥= 0. Moreover, for all ℓ = 1, . . . , q, for all
i ∈ X , V k

ℓ (i) converges to some V
∗
ℓ (i).

Proof: We show convergence when agents transmit
rkℓ,ℓ, ℓ = 1, . . . , q, irrespective of whether this deviates more
than Cthreshold from their previously transmitted cost. This
is without loss of generality as in this case the resulting
sequence of transmitted costs would form a subsequence of
{rkℓ,ℓ}∞k=0, hence it will be convergent as we will show that
{rkℓ,ℓ}∞k=0 converges.

Fix any k ≥ B, and any ℓ ∈ {1, . . . , q}. Let ϵkℓ,m =

rk+1
ℓ,m − rkℓ,m, ϵkℓ,∞ = maxm=1,...,q|rk+1

ℓ,m − rkℓ,m|, and ϵk∞ =

maxℓ=1,...,q

∑k
n=k−B ϵnℓ,∞, i.e., ϵk∞ is the maximum among

agents of the cumulative incremental update over the most
recent B + 1 iterations; recall that due to Assumption 2.1
this is the window within which agent ℓ communicates with

other agents at least once.
Consider the update to the value V k

ℓ (i), for an arbitrary
iteration k and agent ℓ = 1, . . . , q, which we define as

δkℓ (i) = V k+1
ℓ (i)− V k

ℓ (i) = min
u∈U(i)

n∑
j=1

pℓ(i, u, j)
(
gℓ(i, u, j)

+ α[ϕjℓV
k
ℓ (j) +

q∑
m=1
m ̸=ℓ

ϕjmrkℓ,m]
)
− V k

ℓ (i)

= min
u∈U(i)

(n∑
j=1

pℓ(i, u, j)
(
gℓ(i, u, j) + α[ϕjℓV

k−1
ℓ (j)

+

q∑
m=1
m̸=ℓ

ϕjmrk−1
ℓ,m]

)
+ α

n∑
j=1

pℓ(i, u, j)
(
ϕjℓδ

k−1
ℓ (j)

+

q∑
m=1
m̸=ℓ

ϕjmϵk−1
ℓ,m

))
− V k

ℓ (i)

≤ V k
ℓ (i) + max

u∈U(i)
α

n∑
j=1

pℓ(i, u, j)
(
ϕjℓδ

k−1
ℓ (j)

+

q∑
m=1
m ̸=ℓ

ϕjmϵk−1
ℓ,m

)
− V k

ℓ (i)

= max
u∈U(i)

α

n∑
j=1

pℓ(i, u, j)
(
ϕjℓδ

k−1
ℓ (j) +

q∑
m=1
m ̸=ℓ

ϕjmϵk−1
ℓ,m

)
,

where the first equality follows from the definition of V k
ℓ ,

and the second one from a rearrangement after substituting
V k
ℓ (j) = V k−1

ℓ (j) + δk−1
ℓ (j) and rkℓ,m = rk−1

ℓ,m + ϵk−1
ℓ,m .

The inequality follows from the definition of V k
ℓ and by

considering the maximum over u ∈ U(i).
For each ℓ = 1, . . . , q, we now define the maximum update

of |δkℓ |, over all states i ∈ Iℓ, as δ
k

ℓ = maxi∈Iℓ |δkℓ (i)|. It then
follows that for all i ∈ Iℓ,

δkℓ (i) ≤ max
u∈U(i)

α

n∑
j=1

pℓ(i, u, j)
(
ϕjℓδ

k−1

ℓ +

q∑
m=1
m ̸=ℓ

ϕjmϵk−1
ℓ,∞

)

≤ max
u∈U(i)

α

n∑
j=1

pℓ(i, u, j)
(q∑

m=1

ϕjm max{δk−1

ℓ , ϵk−1
ℓ,∞}

)
= αmax{δk−1

ℓ , ϵk−1
ℓ,∞}, (1)

where the first inequality follows from the definition
of δ

k

ℓ , and the equality follows from the fact that∑n
j=1 p(i, u, j) = 1, and

∑q
m=1 ϕjm = 1. Define δ

k

∞ :=

maxℓ=1,...,q

∑k
n=k−B δ

n

ℓ , resulting in

δ
k

∞ ≤ α max
ℓ=1,...,q

k∑
n=k−B

max{δk−1

ℓ , ϵk−1
ℓ,∞}

= αmax{δk−1

∞ , ϵk−1
∞ }, (2)

where the inequality is since (1) holds for all i ∈ Iℓ, and the
exchange of the summation and the maximization operator

is since all quantities are non-negative. At the same time,

k∑
n=k−B

max
m=1,...,q

|rn+1
ℓ,m − rnℓ,m|

≤
k∑

n=k−B

max
m=1,...,q

|rn+1
m,m − rnm,m|

=

k∑
n=k−B

max
m=1,...,q

|
∑
i∈Im

dmi(V
n
m(i) + δnm(i))− rnm,m|

=

k∑
n=k−B

max
m=1,...,q

|
∑
i∈Im

dmiδ
n
m(i)|

=

k∑
n=k−B

max
m=1,...,q

δ
n

m = max
m=1,...,q

k∑
n=k−B

δ
n

m = δ
k

∞, (3)

where the inequality is since
∑k

n=k−B |r
n+1
ℓ,m − rnℓ,m| is

bounded by the value this would become if agents ℓ and
m communicated at every iteration n = k − B + 1, . . . , k
(see Steps 14-18, Algorithm 1). The first equality follows
from the fact that rn+1

m,m =
∑

i∈Im
dmiV

n+1
m (i) (see Step 7,

Algorithm 2), and since V n+1
m (i) = V n

m(i) + δnm(i), while
the last one is due to the definition of δ

k

∞.
By (3) we can upper-bound ϵk∞ =

maxℓ=1,...,q

∑k
n=k−B maxm=1,...,q|rn+1

ℓ,m − rnℓ,m| as

ϵk∞ ≤ max
ℓ=1,...,q

δ
k

∞ ≤ αmax{δk−1

∞ , ϵk−1
∞ }, (4)

where the last inequality follows from (2), and the fact that
the bound in (2) is independent of ℓ.

By (2) and (4) we then have that max{δk∞, ϵk∞} ≤
αmax{δk−1

∞ , ϵk−1
∞ }, which implies that max{δk∞, ϵk∞} is

contractive. As a result, {max{δk∞, ϵk∞}}k≥0, and hence
also {ϵk∞}k≥0 and {δk∞}k≥0 will be converging to zero.
Since {ϵk∞}k≥0 converges, then each term in the summation
in the definition of ϵk∞ will also converge, implying that
{|rk+1

ℓ,m − rkℓ,m|}k≥0 is convergent. This implies that for all
ℓ = 1, . . . , q there exists r̄ such that limk→∞∥rkℓ − r̄∥= 0,
while convergence of {δk∞}k≥0 (due to (2), and the definition
of δkℓ (i)) implies that for all ℓ = 1, . . . , q, for all i ∈ X ,
{V k

ℓ (i)}k≥0 would be convergent, thus concluding the proof.

Theorem 3.1 implies consensus among agents to a com-
mon r̄, and also establishes convergence of {V k

ℓ (i)}k≥0 to
some V ∗

ℓ (i). Moreover, the convergence rate is linear since
max{δk∞, ϵk∞} is shown to be contractive in the proof of The-
orem 3.1. The exact convergence rate for {|rk+1

ℓ,m −rkℓ,m|}k≥0

will depend on B.
Next, we consider error bounds between the limiting V ∗

ℓ (i)
and the optimal J∗(i), satisfying the Bellman equation. For
the subsequent result we assume that B = 0, i.e., agents
communicate with all other agents at all iterations.

Theorem 3.2: Consider Assumption 2.1 with B = 0 and
Algorithm 1. For all ℓ = 1, . . . , q, i ∈ X , we have that the

limit point V ∗
ℓ (i) of {V k

ℓ (i)}k≥0 satisfies

|V ∗
ℓ (i)− J∗(i)|≤ α

δ

1− α
, (5)

where δ := maxℓ∈{1,...,q} maxi,j∈Iℓ |J∗(i) − J∗(j)| and J∗

is the solution of the Bellman equation.
Proof: The proof is inspired by [4]. Fix ℓ = 1, . . . , q

and i ∈ X . We only show that V ∗
ℓ (i) ≤ J∗(i)+α δ

1−α , as the
other side in (5) follows symmetric arguments. To this end,
for each i ∈ Iℓ, define V ℓ(i) := J∗(i) + α δ

1−α . It follows
then that the aggregate of V ℓ(i) can be constructed as

rℓ,ℓ :=
∑
j∈Iℓ

dℓjV ℓ(j) =
∑
j∈Iℓ

dℓj(J
∗(j) + α

δ

1− α
)

≤
∑
j∈Iℓ

dℓj(min
i∈Iℓ

J∗(i) + δ + α
δ

1− α
)

= min
i∈Iℓ

J∗(i) + δ + α
δ

1− α
= min

i∈Iℓ
J∗(i) +

δ

1− α
,

(6)

where the inequality is since J∗(j) ≤ mini∈Iℓ J
∗(i) + δ,

while the second last equality is due to
∑

j∈Iℓ
dℓj = 1.

Denote the Bellman operator induced by the Bellman
equation as T , such that we can compactly write the Bell-
man equation as J∗(i) = (TJ∗)(i), where effectively by
(TJ∗)(i) we imply the right-hand side of the Bellman equa-
tion which depends on i and on J∗(j) for all j = 1, . . . , n.
For all i = 1, . . . , n, we now consider the application of the
Bellman operator to V ℓ, i.e.,

(TV ℓ)(i) = min
u∈U(i)

n∑
j=1

pℓ(i, u, j)
(
gℓ(i, u, j) + α[ϕjℓV ℓ(j)

+

q∑
m=1
m̸=ℓ

ϕjmrℓ,m]
)

≤ min
u∈U(i)

n∑
j=1

pℓ(i, u, j)
(
gℓ(i, u, j) + α[ϕjℓ(J

∗(j)

+ α
δ

1− α
) +

q∑
m=1
m̸=ℓ

ϕjm(min
j∈Im

J∗(j) +
δ

1− α
)]
)

≤ min
u∈U(i)

n∑
j=1

pℓ(i, u, j)
(
gℓ(i, u, j)

+ α

q∑
m=1

ϕjm(J∗(j) +
δ

1− α
)
)

≤ min
u∈U(i)

n∑
j=1

pℓ(i, u, j)
(
gℓ(i, u, j) + αJ∗(j)

)
+ α

δ

1− α
= J∗(i) + α

δ

1− α
= V ℓ(i), (7)

where the first inequality is due to the definition of V ℓ and
utilizes rℓ,m = rm,m, which holds since B = 0. The second
inequality follows, since minj∈Im J∗(j) ≤ J∗(j) for all j ∈
X , and α δ

1−α ≤
δ

1−α , that in turn allows us to combine the
terms multiplied with ϕjℓ into the last summation. The last

Fig. 1. Graph representation of the East-Oxford road network. Junctions
are represented by vertices and edges represent roads.

inequality follows from
∑q

m=1 ϕjm = 1, while the second
last equality is due to the Bellman equation.

By (7) we have that (TV ℓ)(i) ≤ V ℓ(i), for all i =

1, . . . , n, which implies that {V k

ℓ (i)}k≥0 is a non-increasing
sequence. Moreover, T is contractive and as such it will
converge to its (unique) fixed point; a direct consequence
of Theorem 3.1 is that this fixed point is V ∗

ℓ (i) (as the
latter was constructed by successive applications of the
Bellman operator). Therefore, for all i = 1, . . . , n, V ∗

ℓ (i) =
limk→∞(T kV ℓ)(i) ≤ V ℓ(i), thus establishing Vℓ(i) ≤
J∗(i) + α δ

1−α , concluding the proof.
It follows from Theorem 3.2, that if the aggregation sets

I1, . . . , Iq are chosen such that the cost function J∗ is ex-
pected to vary moderately between states within an aggrega-
tion set, then the maximum error compared to V1, . . . , Vq will
be moderate as well. One method to aggregate states with
similar costs is to use feature-based aggregation, whereby the
aggregation is performed on a set of representative features
instead of representative states. This form of aggregation has
been thoroughly investigated; we refer to [9, pg. 322], [12,
pg. 68] and references therein. For applications with a high
discount factor, i.e., α << 1, the maximum error will also
be moderate.

IV. APPLICATION TO TRAFFIC ROUTING

A. Simulation Set-up

We demonstrate the proposed algorithm in a traffic routing
case study. To this end, we begin by modeling the traffic
network as a graph, with vertices representing junctions and
edges representing roads connecting junctions. An illustra-
tion of such a graph representation for the Oxford road
network is shown in Figure 1.

We consider a low-energy antenna with a limited range
and computation power to be situated at the center of each
network partition, gathering the current speed and location of
nearby vehicles. The transition cost of an edge is the expected
travel time along that edge and is computed based on the data

Fig. 2. The complete Oxford road network is subdivided into 5 subgraphs
representing the aggregation sets.

received by cars, i.e.,

gℓ(i, u, j) =
length of edge

average speed of cars on edge
, (8)

where u is used to determine the selected edge between node
i and j. Due to the nature of the low-energy application, we
utilize the proposed algorithm to limit the amount of data
that needs to be sent over longer distances.

As is common in transit node routing, vehicles are trying
to reach a common access node, such as a freeway used
for long-distance routing. The goal is to find the fastest
path to the access point, thus the cost at each vertex is the
discounted expected travel time to the access point. In our
example related to the Oxford traffic network, the access
point will be London Road, leading long-distance travelers
toward London.

B. Simulation results

The Oxford road network is partitioned into 5 subgraphs
using K-means clustering of the vertices based on their
euclidean distance, as shown in Figure 2.

The cost-to-go is calculated as in (8), where the average
car speed is randomly generated from a uniform distribution
to lie between 25% and 100% of the speed limit of the
relevant road. For each vertex, the outgoing edges are enu-
merated and the transition probability between two vertices
is set to either 1 or 0, depending on whether an edge directly
connects the vertices and the input selects that edge.

The disaggregation probabilities are zero for all nodes that
have no edge connected to a vertex in another aggregation
set Iℓ. The remaining vertices are given a normalized non-
zero disaggregation probability. The discount factor, α = 0.9,
is chosen close enough to 1 so as to reflect the desire to
reach the final node and avoid loops, yet smaller than 1, so
as to weight costs further off as less important due to the
constantly evolving traffic situation.

Solving the aggregate problem and comparing it
to what is considered to be the ”true solution” J∗

obtained via conventional value iteration, we notice

Fig. 3. The node cost sorted by size. The blue line indicates the ”true cost”
computed using conventional value iteration, the red markers represent the
cost obtained by the proposed distributed algorithm.

that the normalized average error of the expected
cost-to-go, i.e., 1

n

∑
ℓ=1,...,q

∑
i∈Iℓ

|ϕilVℓ(i)−J∗(i)|
|J∗(i)| ,

is 0.94%, and the normalized maximum error i.e.,
maxℓ=1,...,q maxi∈Iℓ

|ϕilVℓ(i)−J∗(i)|
|J∗(i)| , is 190.83%.

The value function is shown in Figure 3. The evolution
over time of the aggregated costs is shown in Figure 4, where
the colored dots represent when the change to an agent’s local
value function compared to the last broadcast is greater than
the chosen communication threshold (0.1 in this example).
At this point, the agent will broadcast its updated aggregated
cost. If since the last broadcast, no agents value function
has changed significantly, the agents signal each other that
convergence is reached and the algorithm terminates. For
comparison, we show how, on average, the normalized error
increases as we increase the number of agents (see Table
below). This is to be expected, as agents will rely more
heavily on the aggregated values the smaller their respective
partitions become.

Number of Agents 4 8 12 16
Normalized average error 0.67% 1.63% 2.84% 4.46%

To reproduce the numerical results the associated code has
been made available in [13], with the ability to upload any
OpenStreetMap file, which is then converted to a graph and
subsequently a discounted Markov decision process.

V. CONCLUSION

We presented a multi-agent extension of aggregated value
iteration which was shown to be able to solve large-scale dy-
namic programming problems in a fully distributed manner.
The presented methodology finds application in problems
where each agent has only partial knowledge of the transition
probabilities and costs. To this end, we demonstrated its
efficacy in a distributed traffic routing problem, for which
the code has been made available in [13].

Future work aims at extending Theorem 3.2 that is based
on the additional assumption of full network connectivity at

Fig. 4. The aggregated cost r evolving over time with minimal commu-
nication between agents.

all iterations to the more general case of Assumption 2.1, as
well as to the case of hard aggregation (where each state is
clearly assigned to no more than one agent).

ACKNOWLEDGMENTS

The authors would like to acknowledge Dr. Konstantinos
Gatsis for several insightful discussions.

REFERENCES

[1] F. Chatelin and W. L. Miranker, “Acceleration by aggregation of suc-
cessive approximation methods,” Linear Algebra and its Applications,
vol. 43, pp. 17–47, 1982.

[2] D. F. Rogers, R. D. Plante, R. T. Wong, and J. R. Evans, “Aggregation
and disaggregation techniques and methodology in optimization,”
Operations Research, vol. 39, no. 4, pp. 553–582, 1991.

[3] J. C. Bean, J. R. Birge, and R. L. Smith, “Aggregation in dynamic
programming,” Operations Research, vol. 35, no. 2, pp. 215–220,
1987.

[4] J. N. Tsitsiklis and B. van Roy, “Feature-based methods for large scale
dynamic programming,” Machine Learning, vol. 22, no. 1, pp. 59–94,
Mar 1996.

[5] D. Bertsekas, “Multiagent value iteration algorithms in dynamic
programming and reinforcement learning,” Results in Control and
Optimization, vol. 1, p. 100003, 2020.

[6] N. Paul, T. Wirtz, S. Wrobel, and A. Kister, “Multi-agent neural
rewriter for vehicle routing with limited disclosure of costs,” ArXiv,
2022.

[7] X. Guo and B. Hu, “Exact formulas for finite-time estimation errors
of decentralized temporal difference learning with linear function
approximation,” ArXiv, 2022.

[8] T. Doan, S. Maguluri, and J. Romberg, “Finite-time analysis of
distributed TD(0) with linear function approximation on multi-agent
reinforcement learning,” in Proceedings of the 36th International
Conference on Machine Learning, vol. 97. PMLR, June 2019, pp.
1626–1635.

[9] D. Bertsekas, Reinforcement Learning and Optimal Control, ser.
Athena Scientific optimization and computation series. Athena
Scientific, 2019.

[10] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, 2009.

[11] K. Gatsis, “Federated reinforcement learning at the edge: Exploring
the learning-communication tradeoff,” in 2022 European Control Con-
ference (ECC), 2022, pp. 1890–1895.

[12] D. Bertsekas and J. Tsitsiklis, Neuro-Dynamic Programming. Athena
Scientific, 1996.

[13] N. Vertovec, 2022. [Online]. Available:
https://github.com/nikovert/distributed traffic routing

